会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • Compressing Feature Space Transforms
    • 压缩特征空间变换
    • US20110144991A1
    • 2011-06-16
    • US12636033
    • 2009-12-11
    • Petr FousekVaibhava GoelEtienne MarcheretPeder Andreas Olsen
    • Petr FousekVaibhava GoelEtienne MarcheretPeder Andreas Olsen
    • G10L15/06
    • G10L19/0212G10L19/032
    • Methods for compressing a transform associated with a feature space are presented. For example, a method for compressing a transform associated with a feature space includes obtaining the transform including a plurality of transform parameters, assigning each of a plurality of quantization levels for the plurality of transform parameters to one of a plurality of quantization values, and assigning each of the plurality of transform parameters to one of the plurality of quantization values to which one of the plurality of quantization levels is assigned. One or more of obtaining the transform, assigning of each of the plurality of quantization levels, and assigning of each of the transform parameters are implemented as instruction code executed on a processor device. Further, a Viterbi algorithm may be employed for use in non-uniform level/value assignments.
    • 提出了用于压缩与特征空间相关联的变换的方法。 例如,用于压缩与特征空间相关联的变换的方法包括获得包括多个变换参数的变换,将多个变换参数的多个量化级别中的每一个分配给多个量化值中的一个,以及分配 所述多个变换参数中的每一个变换为分配了所述多个量化级中的一个的所述多个量化值之一。 获得变换,分配多个量化级别中的每一个以及每个变换参数的分配中的一个或多个被实现为在处理器设备上执行的指令代码。 此外,维特比算法可用于非均匀级/值分配中。
    • 2. 发明授权
    • Compressing feature space transforms
    • 压缩特征空间转换
    • US08386249B2
    • 2013-02-26
    • US12636033
    • 2009-12-11
    • Petr FousekVaibhava GoelEtienne MarcheretPeder Andreas Olsen
    • Petr FousekVaibhava GoelEtienne MarcheretPeder Andreas Olsen
    • G10L15/06
    • G10L19/0212G10L19/032
    • Methods for compressing a transform associated with a feature space are presented. For example, a method for compressing a transform associated with a feature space includes obtaining the transform including a plurality of transform parameters, assigning each of a plurality of quantization levels for the plurality of transform parameters to one of a plurality of quantization values, and assigning each of the plurality of transform parameters to one of the plurality of quantization values to which one of the plurality of quantization levels is assigned. One or more of obtaining the transform, assigning of each of the plurality of quantization levels, and assigning of each of the transform parameters are implemented as instruction code executed on a processor device. Further, a Viterbi algorithm may be employed for use in non-uniform level/value assignments.
    • 提出了用于压缩与特征空间相关联的变换的方法。 例如,用于压缩与特征空间相关联的变换的方法包括获得包括多个变换参数的变换,将多个变换参数的多个量化级别中的每一个分配给多个量化值中的一个,以及分配 所述多个变换参数中的每一个变换为分配了所述多个量化级中的一个的所述多个量化值之一。 获得变换,分配多个量化级别中的每一个以及每个变换参数的分配中的一个或多个被实现为在处理器设备上执行的指令代码。 此外,维特比算法可用于非均匀级/值分配中。
    • 3. 发明授权
    • Dynamic language model mixtures with history-based buckets
    • 基于历史的桶的动态语言模型混合
    • US07395205B2
    • 2008-07-01
    • US09782434
    • 2001-02-13
    • Martin FranzPeder Andreas Olsen
    • Martin FranzPeder Andreas Olsen
    • G10L15/14
    • G10L15/18G10L15/183
    • In an Automatic Speech Recognition (ASR) system having at least two language models, a method is provided for combining language model scores generated by at least two language models. A list of most likely words is generated for a current word in a word sequence uttered by a speaker, and acoustic scores corresponding to the most likely words are also generated. Language model scores are computed for each of the most likely words in the list, for each of the at least two language models. A set of coefficients to be used to combine the language model scores of each of the most likely words in the list is respectively and dynamically determined, based on a context of the current word. The language model scores of each of the most likely words in the list are respectively combined to obtain a composite score for each of the most likely words in the list, using the set of coefficients determined therefor.
    • 在具有至少两种语言模型的自动语音识别(ASR)系统中,提供了一种组合由至少两种语言模型产生的语言模型得分的方法。 针对由扬声器发出的单词序列中的当前单词生成最可能的单词列表,并且还生成对应于最可能单词的声学分数。 对于列表中的每个最可能的单词,对于至少两种语言模型中的每一种来计算语言模型分数。 基于当前单词的上下文分别动态地确定用于组合列表中每个最可能单词的语言模型分数的一组系数。 分别组合列表中每个最可能的单词的语言模型分数,以使用为此确定的系数集合来获得列表中每个最可能的单词的综合得分。
    • 5. 发明授权
    • Speech and signal digitization by using recognition metrics to select from multiple techniques
    • 通过使用识别度量来选择多种技术的语音和信号数字化
    • US07016835B2
    • 2006-03-21
    • US10323549
    • 2002-12-19
    • Ellen Marie EideRamesh Ambat GopinathDimitri KanevskyPeder Andreas Olsen
    • Ellen Marie EideRamesh Ambat GopinathDimitri KanevskyPeder Andreas Olsen
    • G10L15/00
    • G10L15/32G10L17/26
    • A characteristic-specific digitization method and apparatus are disclosed that reduces the error rate in converting input information into a computer-readable format. The input information is analyzed and subsets of the input information are classified according to whether the input information exhibits a specific physical parameter affecting recognition accuracy. If the input information exhibits the specific physical parameter affecting recognition accuracy, the characteristic-specific digitization system recognizes the input information using a characteristic-specific recognizer that demonstrates improved performance for the given physical parameter. If the input information does not exhibit the specific physical parameter affecting recognition accuracy, the characteristic-specific digitization system recognizes the input information using a general recognizer that performs well for typical input information. In one implementation, input speech having very low recognition accuracy as a result of a physical speech characteristic is automatically identified and recognized using a characteristic-specific speech recognizer.
    • 公开了特征数字化方法和装置,其减少将输入信息转换为计算机可读格式的错误率。 分析输入信息,并根据输入信息是否表现出影响识别精度的特定物理参数对输入信息的子集进行分类。 如果输入信息表现出影响识别精度的特定物理参数,则特征特定数字化系统使用特征识别器识别输入信息,该识别器演示了给定物理参数的改进性能。 如果输入信息不具有影响识别精度的特定物理参数,则特征数字化系统使用对典型输入信息执行良好的一般识别器来识别输入信息。 在一个实现中,作为物理语音特征的结果具有非常低的识别精度的输入语音被使用特征语音识别器自动识别和识别。
    • 9. 发明授权
    • Determining and using acoustic confusability, acoustic perplexity and synthetic acoustic word error rate
    • 确定和使用声学混淆,声学困惑和合成声字错误率
    • US07219056B2
    • 2007-05-15
    • US09838449
    • 2001-04-19
    • Scott Elliot AxelrodPeder Andreas OlsenHarry William PrintzPeter Vincent de Souza
    • Scott Elliot AxelrodPeder Andreas OlsenHarry William PrintzPeter Vincent de Souza
    • G10L15/00G06F7/60
    • G10L15/01
    • Two statistics are disclosed for determining the quality of language models. These statistics are called acoustic perplexity and the synthetic acoustic word error rate (SAWER), and they depend upon methods for computing the acoustic confusability of words. It is possible to substitute models of acoustic data in place of real acoustic data in order to determine acoustic confusability. An evaluation model is created, a synthesizer model is created, and a matrix is determined from the evaluation and synthesizer models. Each of the evaluation and synthesizer models is a hidden Markov model. Once the matrix is determined, a confusability calculation may be performed. Different methods are used to determine synthetic likelihoods. The confusability may be normalized and smoothed and methods are disclosed that increase the speed of performing the matrix inversion and the confusability calculation. A method for caching and reusing computations for similar words is disclosed. Acoustic perplexity and SAWER are determined and applied.
    • 披露了两项统计资料来确定语言模型的质量。 这些统计数据被称为声学困惑和合成声学误码率(SAWER),并且它们依赖于计算单词的声学混淆性的方法。 为了确定声学混淆性,有可能用声学数据的代替代替真实的声学数据。 创建一个评估模型,创建一个合成器模型,并从评估和合成器模型中确定一个矩阵。 每个评估和合成器模型都是隐马尔可夫模型。 一旦矩阵被确定,可以执行混淆度计算。 使用不同的方法来确定合成可能性。 可混淆性可以被归一化和平滑,并且公开了增加执行矩阵求逆的速度和混合计算的方法。 公开了用于缓存和重用类似词语的计算的方法。 确定和应用声学困惑和SAWER。