会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Multisensor evidence integration and optimization in object inspection
    • 多传感器证据整合和物体检测优化
    • US09260122B2
    • 2016-02-16
    • US13489489
    • 2012-06-06
    • Norman HaasYing LiCharles A. OttoSharathchandra U. PankantiHoang Trinh
    • Norman HaasYing LiCharles A. OttoSharathchandra U. PankantiHoang Trinh
    • B61L23/04G06T7/20
    • B61L23/042
    • Video image data is acquired from synchronized cameras having overlapping views of objects moving past the cameras through a scene image in a linear array and with a determined speed. Processing units generate one or more object detections associated with confidence scores within frames of the camera video stream data. The confidence scores are modified as a function of constraint contexts including a cross-frame constraint that is defined by other confidence scores of other object detection decisions from the video data that are acquired by the same camera at different times; a cross-view constraint defined by other confidence scores of other object detections in the video data from another camera with an overlapping field-of-view; and a cross-object constraint defined by a sequential context of a linear array of the objects, spatial attributes of the objects and the determined speed of the movement of the objects relative to the cameras.
    • 视频图像数据从同步摄像机获取,该相机具有通过线性阵列中的场景图像以确定的速度移动通过相机的对象的重叠视图。 处理单元产生与相机视频流数据的帧内的置信度分数相关联的一个或多个对象检测。 可信度分数被修改为约束上下文的函数,包括由不同时间由同一相机获取的视频数据的其他对象检测决定的其他置信度分数定义的跨帧约束; 由具有重叠视场的另一相机的视频数据中的其他对象检测的其他置信度得分定义的横视约束; 以及由对象的线性阵列,对象的空间属性和所确定的对象相对于照相机的移动速度的顺序上下文定义的跨对象约束。
    • 2. 发明申请
    • MULTISENSOR EVIDENCE INTEGRATION AND OPTIMIZATION IN OBJECT INSPECTION
    • 多媒体证据集成和对象检查优化
    • US20130329049A1
    • 2013-12-12
    • US13489489
    • 2012-06-06
    • Norman HaasYing LiCharles A. OttoSharathchandra U. PankantiHoang Trinh
    • Norman HaasYing LiCharles A. OttoSharathchandra U. PankantiHoang Trinh
    • H04N7/18
    • B61L23/042
    • Video image data is acquired from synchronized cameras having overlapping views of objects moving past the cameras through a scene image in a linear array and with a determined speed. Processing units generate one or more object detections associated with confidence scores within frames of the camera video stream data. The confidence scores are modified as a function of constraint contexts including a cross-frame constraint that is defined by other confidence scores of other object detection decisions from the video data that are acquired by the same camera at different times; a cross-view constraint defined by other confidence scores of other object detections in the video data from another camera with an overlapping field-of-view; and a cross-object constraint defined by a sequential context of a linear array of the objects, spatial attributes of the objects and the determined speed of the movement of the objects relative to the cameras.
    • 视频图像数据从同步摄像机获取,该相机具有通过线性阵列中的场景图像以确定的速度移动通过相机的对象的重叠视图。 处理单元产生与相机视频流数据的帧内的置信度分数相关联的一个或多个对象检测。 可信度分数被修改为约束上下文的函数,包括由不同时间由同一相机获取的视频数据的其他对象检测决定的其他置信度分数定义的跨帧约束; 由具有重叠视场的另一相机的视频数据中的其他对象检测的其他置信度得分定义的横视约束; 以及由对象的线性阵列,对象的空间属性和所确定的对象相对于照相机的移动速度的顺序上下文定义的跨对象约束。
    • 6. 发明授权
    • Event detection through pattern discovery
    • 通过模式发现进行事件检测
    • US08682032B2
    • 2014-03-25
    • US13213262
    • 2011-08-19
    • Quanfu FanPrasad GabburSachiko MiyazawaJiyan PanSharathchandra U. PankantiHoang Trinh
    • Quanfu FanPrasad GabburSachiko MiyazawaJiyan PanSharathchandra U. PankantiHoang Trinh
    • G06K9/62
    • G06K9/6292G06K9/6885
    • Events are classified through string pattern recognition. Text labels are assigned to image primitives in a time-ordered set of training images and to related time-ordered transactions in an associated training transaction log in a combined time-ordered training string of text labels as a function of image types. Transactions are labeled in a training transaction log with a transaction label, a training primitive image of a start of a transaction with a start image text label, a training primitive of an entry of a transaction into the log with an entry image text label, and a training primitive of a conclusion of a transaction with an ending image text label. Positive subset string patterns are discovered representing true events from the combined time-ordered training string of text labels, and negative subset string patterns defined by removing single transaction primitive labels from the positive subset string patterns.
    • 事件通过字符串模式识别分类。 将文本标签分配给训练图像的时间有序集合中的图像原语以及相关联的训练事务日志中的相关时间顺序事务,其中文本标签的组合时间有序训练串作为图像类型的函数。 事务在具有事务标签的训练事务日志中被标记,具有开始图像文本标签的事务开始的训练原始图像,具有条目图像文本标签的事务入口的训练原语以及 与结束图像文本标签交易结论的训练原语。 从组合的时间有序的文本标签的训练串中发现表示真实事件的正的子集字符串模式,以及通过从正的子集字符串模式中去除单个事务原始标签而定义的负子集串模式。
    • 7. 发明申请
    • EVENT DETECTION THROUGH PATTERN DISCOVERY
    • 通过图案发现的事件检测
    • US20130044942A1
    • 2013-02-21
    • US13213262
    • 2011-08-19
    • Quanfu FanPrasad GabburSachiko MiyazawaJiyan PanSharathchandra U. PankantiHoang Trinh
    • Quanfu FanPrasad GabburSachiko MiyazawaJiyan PanSharathchandra U. PankantiHoang Trinh
    • G06K9/62
    • G06K9/6292G06K9/6885
    • Events are classified through string pattern recognition. Text labels are assigned to image primitives in a time-ordered set of training images and to related time-ordered transactions in an associated training transaction log in a combined time-ordered training string of text labels as a function of image types. Transactions are labeled in a training transaction log with a transaction label, a training primitive image of a start of a transaction with a start image text label, a training primitive of an entry of a transaction into the log with an entry image text label, and a training primitive of a conclusion of a transaction with an ending image text label. Positive subset string patterns are discovered representing true events from the combined time-ordered training string of text labels, and negative subset string patterns defined by removing single transaction primitive labels from the positive subset string patterns.
    • 事件通过字符串模式识别分类。 将文本标签分配给训练图像的时间有序集合中的图像原语以及相关联的训练事务日志中的相关时间顺序事务,其中文本标签的组合时间有序训练串作为图像类型的函数。 事务在具有事务标签的训练事务日志中被标记,具有开始图像文本标签的事务开始的训练原始图像,具有条目图像文本标签的事务入口的训练原语以及 与结束图像文本标签交易结论的训练原语。 从组合的时间有序的文本标签的训练串中发现表示真实事件的正的子集字符串模式,以及通过从正的子集字符串模式中去除单个事务原始标签而定义的负子集串模式。
    • 10. 发明授权
    • Identifying abnormalities in resource usage
    • 识别资源使用异常
    • US08751414B2
    • 2014-06-10
    • US13100868
    • 2011-05-04
    • Ankur DattaCharles A. OttoSharathchandra U. Pankanti
    • Ankur DattaCharles A. OttoSharathchandra U. Pankanti
    • G06N5/04G06F11/07G06F11/30
    • G06F11/0751G06F11/3058G06F11/3082
    • A method, data processing system, and computer program product for identifying abnormalities in data. A model representing a plurality of modes for an activity generated from training data is retrieved. The training data includes a first plurality of measurements of a first performance of the activity over a period of time. Each of the plurality of modes is identified as one of normal and abnormal. Activity data including a second plurality of measurements of a second performance of the activity is received. A portion of the activity data is compared with the plurality of modes in the model. A notification of an abnormality in the second performance of the activity is generated in response to an identification that the portion of the activity data matches a mode in the plurality of modes identified as abnormal. Confirmation of the abnormality is requested via a user interface.
    • 一种用于识别数据异常的方法,数据处理系统和计算机程序产品。 检索表示从训练数据生成的活动的多个模式的模型。 训练数据包括在一段时间内第一次执行活动的测量。 多个模式中的每一个被标识为正常和异常之一。 接收包括活动的第二次执行的第二多个测量的活动数据。 将活动数据的一部分与模型中的多个模式进行比较。 响应于识别出活动数据的一部分与被识别为异常的多个模式中的模式相匹配的标识来生成第二次活动的异常的通知。 通过用户界面要求确认异常。