会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Identifying abnormalities in resource usage
    • 识别资源使用异常
    • US08751414B2
    • 2014-06-10
    • US13100868
    • 2011-05-04
    • Ankur DattaCharles A. OttoSharathchandra U. Pankanti
    • Ankur DattaCharles A. OttoSharathchandra U. Pankanti
    • G06N5/04G06F11/07G06F11/30
    • G06F11/0751G06F11/3058G06F11/3082
    • A method, data processing system, and computer program product for identifying abnormalities in data. A model representing a plurality of modes for an activity generated from training data is retrieved. The training data includes a first plurality of measurements of a first performance of the activity over a period of time. Each of the plurality of modes is identified as one of normal and abnormal. Activity data including a second plurality of measurements of a second performance of the activity is received. A portion of the activity data is compared with the plurality of modes in the model. A notification of an abnormality in the second performance of the activity is generated in response to an identification that the portion of the activity data matches a mode in the plurality of modes identified as abnormal. Confirmation of the abnormality is requested via a user interface.
    • 一种用于识别数据异常的方法,数据处理系统和计算机程序产品。 检索表示从训练数据生成的活动的多个模式的模型。 训练数据包括在一段时间内第一次执行活动的测量。 多个模式中的每一个被标识为正常和异常之一。 接收包括活动的第二次执行的第二多个测量的活动数据。 将活动数据的一部分与模型中的多个模式进行比较。 响应于识别出活动数据的一部分与被识别为异常的多个模式中的模式相匹配的标识来生成第二次活动的异常的通知。 通过用户界面要求确认异常。
    • 4. 发明申请
    • IDENTIFYING ABNORMALITIES IN RESOURCE USAGE
    • 识别资源使用异常
    • US20120284211A1
    • 2012-11-08
    • US13100868
    • 2011-05-04
    • Ankur DattaCharles A. OttoSharathchandra U. Pankanti
    • Ankur DattaCharles A. OttoSharathchandra U. Pankanti
    • G06F15/18G06F17/00G06N5/04
    • G06F11/0751G06F11/3058G06F11/3082
    • A method, data processing system, and computer program product for identifying abnormalities in data. A model representing a plurality of modes for an activity generated from training data is retrieved. The training data includes a first plurality of measurements of a first performance of the activity over a period of time. Each of the plurality of modes is identified as one of normal and abnormal. Activity data including a second plurality of measurements of a second performance of the activity is received. A portion of the activity data is compared with the plurality of modes in the model. A notification of an abnormality in the second performance of the activity is generated in response to an identification that the portion of the activity data matches a mode in the plurality of modes identified as abnormal. Confirmation of the abnormality is requested via a user interface.
    • 一种用于识别数据异常的方法,数据处理系统和计算机程序产品。 检索表示从训练数据生成的活动的多个模式的模型。 训练数据包括在一段时间内第一次执行活动的测量。 多个模式中的每一个被标识为正常和异常之一。 接收包括活动的第二次执行的第二多个测量的活动数据。 将活动数据的一部分与模型中的多个模式进行比较。 响应于识别出活动数据的一部分与被识别为异常的多个模式中的模式相匹配的标识来生成第二次活动的异常的通知。 通过用户界面要求确认异常。
    • 6. 发明授权
    • Object retrieval in video data using complementary detectors
    • 使用互补检测器对视频数据进行对象检索
    • US09002060B2
    • 2015-04-07
    • US13535409
    • 2012-06-28
    • Ankur DattaRogerio S. FerisSharathchandra U. PankantiYun Zhai
    • Ankur DattaRogerio S. FerisSharathchandra U. PankantiYun Zhai
    • G06K9/00G06K9/62
    • G06K9/00771G06K9/00718G06K9/00758G06K9/6215G06K9/6218G06K9/6256G06K9/6262G06K2009/00738
    • Automatic object retrieval from input video is based on learned, complementary detectors created for each of a plurality of different motionlet clusters. The motionlet clusters are partitioned from a dataset of training vehicle images as a function of determining that vehicles within each of the scenes of the images in each cluster share similar two-dimensional motion direction attributes within their scenes. To train the complementary detectors, a first detector is trained on motion blobs of vehicle objects detected and collected within each of the training dataset vehicle images within the motionlet cluster via a background modeling process; a second detector is trained on each of the training dataset vehicle images within the motionlet cluster that have motion blobs of the vehicle objects but are misclassified by the first detector; and the training repeats until all of the training dataset vehicle images have been eliminated as false positives or correctly classified.
    • 从输入视频自动对象检索是基于为多个不同的运动集群中的每一个创建的学习的互补检测器。 作为确定每个群集中的图像的每个场景内的车辆在其场景内共享类似的二维运动方向属性的函数的函数,将运动群集从训练车辆图像的数据集分割。 训练互补检测器,对第一检测器进行训练,以通过背景建模过程在运动组内的每个训练数据集车辆图像内检测和收集的车辆物体的运动斑点进行训练; 对具有车辆对象的运动斑点但由第一检测器错误分类的运动集群内的训练数据集车辆图像上的每一个训练第二检测器; 并且训练重复,直到所有训练数据集车辆图像已被消除为假阳性或正确分类为止。
    • 7. 发明申请
    • OBJECT RETRIEVAL IN VIDEO DATA USING COMPLEMENTARY DETECTORS
    • 使用完全检测器的视频数据中的对象检索
    • US20140003708A1
    • 2014-01-02
    • US13535409
    • 2012-06-28
    • Ankur DattaRogerio S. FerisSharathchandra U. PankantiYun Zhai
    • Ankur DattaRogerio S. FerisSharathchandra U. PankantiYun Zhai
    • G06K9/62
    • G06K9/00771G06K9/00718G06K9/00758G06K9/6215G06K9/6218G06K9/6256G06K9/6262G06K2009/00738
    • Automatic object retrieval from input video is based on learned, complementary detectors created for each of a plurality of different motionlet clusters. The motionlet clusters are partitioned from a dataset of training vehicle images as a function of determining that vehicles within each of the scenes of the images in each cluster share similar two-dimensional motion direction attributes within their scenes. To train the complementary detectors, a first detector is trained on motion blobs of vehicle objects detected and collected within each of the training dataset vehicle images within the motionlet cluster via a background modeling process; a second detector is trained on each of the training dataset vehicle images within the motionlet cluster that have motion blobs of the vehicle objects but are misclassified by the first detector; and the training repeats until all of the training dataset vehicle images have been eliminated as false positives or correctly classified.
    • 从输入视频自动对象检索是基于为多个不同的运动集群中的每一个创建的学习的互补检测器。 作为确定每个群集中的图像的每个场景内的车辆在其场景内共享类似的二维运动方向属性的函数的函数,将运动群集从训练车辆图像的数据集分割。 训练互补检测器,对第一检测器进行训练,以通过背景建模过程在运动组内的每个训练数据集车辆图像内检测和收集的车辆物体的运动斑点进行训练; 对具有车辆对象的运动斑点但由第一检测器错误分类的运动集群内的训练数据集车辆图像上的每一个训练第二检测器; 并且训练重复,直到所有训练数据集车辆图像已被消除为假阳性或正确分类为止。
    • 9. 发明申请
    • INCORPORATING VIDEO META-DATA IN 3D MODELS
    • 在3D模型中加入视频元数据
    • US20120281873A1
    • 2012-11-08
    • US13101401
    • 2011-05-05
    • Lisa M. BrownAnkur DattaRogerio S. FerisSharathchandra U. Pankanti
    • Lisa M. BrownAnkur DattaRogerio S. FerisSharathchandra U. Pankanti
    • G06K9/00
    • G06T7/20G06K9/00208G06T7/251G06T13/20G06T17/00G06T19/006
    • A moving object detected and tracked within a field of view environment of a 2D data feed of a calibrated video camera is represented by a 3D model through localizing a centroid of the object and determining an intersection with a ground-plane within the field of view environment. An appropriate 3D mesh-based volumetric model for the object is initialized by using a back-projection of a corresponding 2D image as a function of the centroid and the determined ground-plane intersection. Nonlinear dynamics of a tracked motion path of the object are represented as a collection of different local linear models. A texture of the object is projected onto the 3D model, and 2D tracks of the object are upgraded to 3D motion to drive the 3D model by learning a weighted combination of the different local linear models that minimizes an image re-projection error of model movement.
    • 在校准摄像机的2D数据馈送的视野环境内检测和跟踪的移动物体由3D模型表示,其通过定位对象的质心并确定视场环境内的接地平面的交点 。 通过使用对应的2D图像的反投影作为质心和确定的地面交点的函数来初始化用于对象的适当的基于3D网格的体积模型。 对象的跟踪运动路径的非线性动力学被表示为不同局部线性模型的集合。 将对象的纹理投影到3D模型上,并且将对象的2D轨迹升级到3D运动,以通过学习不同局部线性模型的加权组合来驱动3D模型,从而最小化模型运动的图像重新投影误差 。
    • 10. 发明申请
    • ANOMALOUS PATTERN DISCOVERY
    • 异常图案发现
    • US20120237081A1
    • 2012-09-20
    • US13049032
    • 2011-03-16
    • Ankur DattaBalamanohar PaluriSharathchandra U. PankantiYun Zhai
    • Ankur DattaBalamanohar PaluriSharathchandra U. PankantiYun Zhai
    • G06K9/00
    • G06K9/00778G06K9/00785G06K9/6284
    • A trajectory of movement of an object is tracked in a video data image field that is partitioned into a plurality of different grids. Global image features from video data relative to the trajectory are extracted and compared to a learned trajectory model to generate a global anomaly detection confidence decision value as a function of fitting to the learned trajectory model. Local image features are also extracted for each of the image field grids that include object trajectory, which are compared to learned feature models for the grids to generate local anomaly detection confidence decisions for each grid as a function of fitting to the learned feature models for the grids. The global anomaly detection confidence decision value and the local anomaly detection confidence decision values for the grids are into a fused anomaly decision with respect to the tracked object.
    • 在被划分成多个不同网格的视频数据图像字段中跟踪对象的移动轨迹。 提取视频数据相对于轨迹的全局图像特征,并将其与已学习的轨迹模型进行比较,以生成与学习轨迹模型拟合的函数的全局异常检测置信判定值。 对于包括对象轨迹的每个图像场网格也提取局部图像特征,其与用于网格的学习特征模型进行比较,以针对每个网格生成局部异常检测置信决定,作为对于学习特征模型的拟合的函数, 网格 全局异常检测置信度判定值和网格的局部异常检测置信判定值相对于跟踪对象进入融合异常判定。