会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Method for controlling a chemical mechanical polishing (CMP) operation
    • 用于控制化学机械抛光(CMP)操作的方法
    • US06932671B1
    • 2005-08-23
    • US10840066
    • 2004-05-05
    • Nikolay KorovinStephen Schultz
    • Nikolay KorovinStephen Schultz
    • B24B37/04B24B49/02B24B49/04B24B49/00
    • B24B37/013B24B49/02B24B49/04
    • A method is provided for controlling a chemical mechanical polishing (CMP) operation. The method is operative in a CMP apparatus having a plurality of end point detection probes and in which a plurality of process variables can be set to adjust the removal rate across a layer that is to be polished. In accordance with the method, the process variables are adjusted to a first setting and a layer overlying a work piece is polished using that setting. Information from the plurality of end point detection probes is collected and evaluated to determine removal rate of the layer. The process variables are adjusted in response the evaluation and a second layer on a second work piece is polished using the adjusted settings.
    • 提供了一种用于控制化学机械抛光(CMP)操作的方法。 该方法在具有多个端点检测探针的CMP装置中操作,并且其中可以设置多个工艺变量以调整穿过待抛光层的去除率。 根据该方法,将过程变量调整为第一设置,并且使用该设置对工件上的层进行抛光。 收集和评估来自多个端点检测探针的信息以确定该层的去除率。 响应于评估调整过程变量,并使用调整后的设置对第二工件上的第二层进行抛光。
    • 2. 发明授权
    • Method to mathematically characterize a multizone carrier
    • 数学表征多区域运营商的方法
    • US06468131B1
    • 2002-10-22
    • US09724398
    • 2000-11-28
    • Nikolay Korovin
    • Nikolay Korovin
    • B24B4900
    • B24B37/042B24B41/061B24B49/16
    • In a method for mathematically characterizing a multizone CMP carrier, alternating zones are pressurized to a first pressure and the remaining zones are pressurized to a second lower pressure. A first wafer may then be polished using this combination of pressures and a first material removal profile may then be found. The pressures in the zones may then be reversed, and a second wafer may then be polished using this new combination of pressures, and a second material removal profile may then be found. Symmetrical points of intersection about the central axis of the carrier may be determined which identify the radius of each zone, and each point corresponds to a middle point for each transitional area between zones. The absolute values for the first derivatives for two pairs of symmetrical points may be averaged to determine a set of parameters that allow the multizone carrier to be mathematically characterized.
    • 在用于数学表征多区域CMP载体的方法中,交替区域被加压到第一压力,并且其余区域被加压到第二较低压力。 然后可以使用这种压力组合来抛光第一晶片,然后可以找到第一材料去除曲线。 然后可以将区域中的压力反转,然后可以使用这种新的压力组合来抛光第二晶片,然后可以找到第二材料去除曲线。 可以确定关于载体的中心轴的对称交点,其标识每个区域的半径,并且每个点对应于区域之间的每个过渡区域的中点。 可以对两对对称点的一阶导数的绝对值进行平均,以确定允许多区域载体在数学上表征的一组参数。
    • 4. 发明授权
    • Methods and apparatuses for conditioning polishing surfaces utilized during CMP processing
    • 用于调节CMP加工过程中使用的抛光表面的方法和装置
    • US06953382B1
    • 2005-10-11
    • US10876826
    • 2004-06-24
    • Nikolay KorovinRobert J. Stoya
    • Nikolay KorovinRobert J. Stoya
    • B24B1/00B24B37/04B24B49/18B24B53/007
    • B24B53/017B24B49/18
    • Methods and apparatus are provided for conditioning of polishing surfaces utilized during CMP processing. The method comprises contacting the polishing surface and a conditioning surface with a first force, one of the surfaces coupled to a support member that has an axis. The polishing surface and/or the conditioning surface is moved at a constant velocity. Torque exerted by the support member about the axis to effect a relative position between the conditioning surface and the polishing surface is measured and used to obtain a process variable. The process variable is compared to a setpoint value for the relative position of the conditioning surface and the polishing surface. A second force is calculated and the polishing surface and the conditioning surface then are contacted with the second force, if the process variable differs from the setpoint value by more than an allowed tolerance.
    • 提供了用于调节在CMP处理期间使用的抛光表面的方法和装置。 该方法包括使抛光表面和调节表面接触第一力,其中一个表面联接到具有轴的支撑构件。 抛光表面和/或调理表面以恒定的速度移动。 测量由支撑构件围绕轴线施加的扭矩以实现调节表面和抛光表面之间的相对位置,并用于获得过程变量。 将过程变量与调节表面和抛光表面的相对位置的设定值进行比较。 如果过程变量与设定点值不同于允许的公差,则计算第二个力并且抛光表面和调节表面接触第二个力。
    • 7. 发明授权
    • Method to determine optimum geometry of a multizone carrier
    • 确定多区域载波最佳几何的方法
    • US06544103B1
    • 2003-04-08
    • US09724417
    • 2000-11-28
    • Nikolay Korovin
    • Nikolay Korovin
    • B24B4900
    • B24B37/27B24B37/042
    • The invention is a method for optimizing the geometry of a plurality of zones in a multizone carrier used in a CMP process. This allows a multizone carrier, with a limited number of zones, to be designed that is able to apply, as closely as possible for that number of zones, an optimum pressure on the back surface of a wafer. An optimum pressure profile may be calculated by subtracting a desired post-CMP thickness profile from a typical incoming thickness profile and dividing the remainder by a polishing removal profile. The optimum pressure profile will generally be impossible to achieve with a limited number of zones within a multizone carrier. However, a carrier with an optimum geometry will be able to apply a pressure profile that is as close as possible given the limited number of zones within the carrier. The optimum geometry of the zones may be calculated using a multidimensional optimization procedure.
    • 本发明是一种用于优化CMP工艺中使用的多区域载体中的多个区域的几何形状的方法。 这允许设计具有有限数量的区域的多区域载体,其能够尽可能接近于该数量的区域施加晶片背面上的最佳压力。可以计算最佳压力分布 通过从典型的进入厚度分布中减去所需的后CMP厚度分布,并将剩余部分除以抛光去除曲线。 通常在多区域载体内的有限数量的区域内不可能实现最佳压力分布。 然而,具有最佳几何形状的载体将能够在给定载体内有限数量的区域的情况下施加尽可能接近的压力分布。 可以使用多维优化程序来计算区域的最佳几何形状。
    • 8. 发明授权
    • Process for monitoring a process, planarizing a surface, and for quantifying the results of a planarization process
    • US06503767B2
    • 2003-01-07
    • US09741461
    • 2000-12-19
    • Nikolay Korovin
    • Nikolay Korovin
    • H01L2166
    • H01L22/20B24B37/042B24B49/03
    • A process for quantifying the results of a planarization process provides metrics that can be applied to process parameters that affect the planarization results at various localized regions on a surface being planarized. A surface of a work piece is planarized and the results are recorded as an experimental work piece scan by a plurality of measurements of the amount of material removed as a function of the location on the surface of the work piece. The data from the plurality of measurements are fitted to an mth order polynomial to construct an approximation of a low spatial frequency scan. The work piece surface is then divided into a plurality of regions, each of the regions influenced by a process variable in the planarization process. The approximation of the low spatial frequency scan is then analyzed in each of the regions by fitting the low spatial frequency scan in that region to an nth order polynomial. The coefficient of the nth order term is used as a metric for the results in that region. Subsequent work pieces can be processed and measured in like manner; and if a process parameter is changed, changes in the resulting metrics can be used to quantify the results of using the changed process parameter. In a further embodiment, an approximation of a high spatial frequency scan can be achieved by subtracting the approximation of the low spatial frequency scan from the experimental work piece scan. A metric, such as standard deviation, can be used to quantify results of changes in parameters affecting the high spatial frequency components of the process.
    • 9. 发明授权
    • Method for processing a work piece in a multi-zonal processing apparatus
    • 在多区域处理装置中处理工件的方法
    • US06790123B2
    • 2004-09-14
    • US10147418
    • 2002-05-16
    • Nikolay KorovinStephen C. Schultz
    • Nikolay KorovinStephen C. Schultz
    • B24B4900
    • H01L21/67253B24B37/042B24B49/02B24B51/00
    • Layers of material deposited exhibit both a local and a global pattern. The local pattern is a function of the underlying wafer surface, but the global pattern is a function of the equipment in which the layer was deposited. Accurate reconstruction of the surface topology of a layer on a product wafer is achieved despite the local pattern by determining the surface topology of a blanket layer on a blank wafer, measuring the thickness of the layer at a few selected locations on a product wafer, calculating scaling coefficients representing deviations of the measured thickness from the blanket layer topology, and then multiplying the blanket layer topology by the scaling coefficients. The surface reconstruction results from modifying the surface topology of the blanket layer so that it has the same thickness at the measured locations as does the product wafer layer.
    • 沉积的材料层表现出局部和全局图案。 局部图案是下面的晶片表面的函数,但是全局图案是其中沉积层的设备的函数。 通过确定空白晶片上的覆盖层的表面拓扑,测量产品晶片上几个选定位置处的层的厚度,计算出产品晶片上的层的表面拓扑的精确重建,尽管局部图案被实现 缩放系数表示测量厚度与覆盖层拓扑的偏差,然后将覆盖层拓扑乘以缩放系数。 表面重建是通过改变橡皮布层的表面拓扑,使得其在测量位置处具有与产品晶片层相同的厚度。