会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明专利
    • Nanocrystal containing titanium alloy, and method for producing the same
    • 含纳米钛合金的纳米晶体及其制造方法
    • JP2012111991A
    • 2012-06-14
    • JP2010260600
    • 2010-11-22
    • Nhk Spring Co LtdTohoku Univ国立大学法人東北大学日本発條株式会社
    • LEE SANG-HAKONO YOSHIKIMATSUMOTO HIROAKICHIBA MASAHIKO
    • C22C14/00C22F1/00C22F1/18
    • C22F1/183C22C14/00C22F1/00
    • PROBLEM TO BE SOLVED: To provide a Ti alloy which has high strength, high fatigue strength and reduced hardness and is suitable as a material for various structures including automobiles, and a method for producing the same.SOLUTION: An alloy of which a processing starting structure is an α' martensite phase is subjected to hot working. It is heated at a temperature-rising rate of 50-800°C/sec, a strain rate is at 0.01-10/sec in a temperature range of 700 to 800°C and is at 0.1-10/sec in a temperature range of higher than 800°C and lower than 1,000°C, and the strain is 0.5 or greater. In this manner, the titanium alloy having equiaxial crystals whose average crystal grain diameter is smaller than 1,000 nm is obtained which has high strength and high fatigue resistance properties, has a hardness of less than 400 HV and tensile strength of 1,200 MPa or more, and has excellent static strength and dynamic strength.
    • 要解决的问题:提供一种具有高强度,高疲劳强度和降低的硬度并且适合作为包括汽车的各种结构的材料的Ti合金及其制造方法。 解决方案:将加工起始结构为α'马氏体相的合金进行热加工。 以50-800℃/秒的升温速度加热,在700〜800℃的温度范围内的应变速度为0.01-10 /秒,在温度范围为0.1-10 /秒 高于800℃且低于1000℃,并且应变为0.5以上。 以这种方式,获得具有高强度和高抗疲劳性能的平均晶粒直径小于1000nm的等轴晶体的钛合金,硬度小于400HV,拉伸强度为1200MPa以上, 具有优异的静态强度和动态强度。 版权所有(C)2012,JPO&INPIT
    • 4. 发明专利
    • Ni基超耐熱合金の分塊用中間素材及びその製造方法、Ni基超耐熱合金の製造方法
    • 镍基耐热超合金的中间材料的制造方法,中间材料的制造方法以及生产镍基超耐热合金的方法
    • JP2015059239A
    • 2015-03-30
    • JP2013193353
    • 2013-09-18
    • 国立大学法人東北大学Tohoku Univ日立金属株式会社Hitachi Metals Ltd
    • CHIBA MASAHIKOUENO TOMONORISATO KOJI
    • C22C19/05C22F1/10F01D5/28F01D25/00F02C7/00
    • 【課題】特に、体積%でγ’量が35%以上のNi基超耐熱合金を溶製材として製造しても、熱間加工性を向上させて分塊に適した分塊用中間素材とその製造方法を提供する。【解決手段】再結晶化した等軸晶組織(鋳造組織は除く)を有するNi基超耐熱合金の分塊用中間素材である。また本発明は、鋳造後のNi基超耐熱合金塊に加工率15%以上の冷間加工を施した後、再結晶化温度以上の温度まで加熱させて、再結晶化した等軸晶組織とするNi基超耐熱合金の分塊用中間素材の製造方法であり、鋳造後のNi基超耐熱合金塊に1100℃以上の加熱温度で均質化熱処理を行った後、冷間加工するNi基超耐熱合金の分塊用中間素材の製造方法である。【選択図】図1
    • 要解决的问题:为了提供一种适于起霜的中间材料,其热加工性提高,即使γ'量(体积%)为35%以上的Ni系耐热超耐热合金为35%以上, 作为锭料生产。解决方案:Ni基耐热超耐热合金的中间材料具有铸态结构以外的再结晶等轴晶体结构。 制造Ni系耐热超耐热合金中间材料的方法包括将铸造后的Ni系耐热超耐热合金锭以15%以上的加工率进行冷加工,并加热至等于 达到或高于再结晶温度以形成重结晶的等轴晶体结构。 将铸造后的Ni系耐热超合金的锭子在1100℃以上的加热温度下进行均质化热处理,然后进行冷加工。
    • 5. 发明专利
    • Method of determining friction coefficient in cylindrical specimen compression process
    • 确定圆柱样本压缩过程中摩擦系数的方法
    • JP2011196758A
    • 2011-10-06
    • JP2010062164
    • 2010-03-18
    • Tohoku Univ国立大学法人東北大学
    • LI YUNPINGONODERA EMICHIBA MASAHIKO
    • G01N19/02B21J5/00B21J5/08
    • PROBLEM TO BE SOLVED: To provide a method of determining a shear friction coefficient between a cylindrical specimen undergoing friction and an anvil in a compression process for a cylindrical specimen of an optional height/radius ratio based on finite element analysis as to a simulation of a compression process.SOLUTION: Changes in the shape of the cylindrical specimen, that is, the heights (Hand H) of the specimen before and after compression, and an original end-face radius (R) of the specimen after compression and a maximum radius (R) thereof, are put together to derive a relation between a strain and a friction coefficient. In the case where an initial height/radius ratio of the cylindrical specimen is constant, a relational expression is established between a shape change and a friction coefficient after systematically FEM-analyzing a change in the specimen shape caused by friction in the compression process. A change in the specimen shape is systematically analyzed from the height/radius ratio of the cylindrical specimen and a change in the friction coefficient to establish a relational expression among the friction coefficient, an initial specimen height/radius ratio, and a specimen shape. This allows a friction coefficient to be determined in a compression process for a cylindrical specimen of an optional height/radius ratio.
    • 要解决的问题:提供一种基于有限元分析来确定在可选高度/半径比的圆柱形试样的压缩过程中经历摩擦的圆柱形试样和砧座之间的剪切摩擦系数的方法, 压缩过程。解决方案:圆柱形样品的形状变化,即压缩前后样品的高度(手H)和压缩后样品的原始端面半径(R)和最大半径 (R)放在一起以导出应变和摩擦系数之间的关系。 在圆柱形样品的初始高度/半径比恒定的情况下,在系统地FEM分析由压缩过程中的摩擦引起的样本形状的变化之后,形成形状变化和摩擦系数之间的关系式。 从圆柱形样品的高度/半径比和摩擦系数的变化系统地分析样品形状的变化,以建立摩擦系数,初始样品高度/半径比和样品形状之间的关系表达式。 这允许在可选的高度/半径比的圆柱形样品的压缩过程中确定摩擦系数。
    • 9. 发明专利
    • Method for fining crystal grain of nitrogen-added co-cr-mo alloy
    • 氮化添加CO-CR-MO合金晶粒的方法
    • JP2011184783A
    • 2011-09-22
    • JP2010054137
    • 2010-03-11
    • Tohoku Univ国立大学法人東北大学
    • CHIBA MASAHIKOKUROSU SHINGO
    • C22F1/10C22C19/07C22F1/00
    • PROBLEM TO BE SOLVED: To provide a method for fining the crystal grains of a nitrogen-added Co-Cr-Mo alloy by which, in a nitrogen-containing Co-Cr-Mo alloy, a starting structure before hot working is controlled into a fine nitride-containing structure using heat treatment, hot working is performed at 930 to 1,030°C at which fine nitride is not vanished during the hot working to suppress the growth of recrystallized grains, and super fine grains of ≤1 μm can be formed.
      SOLUTION: Co-Cr-Mo based alloy containing, by weight, 26 to 35% Cr, 2 to 6% Mo, 0 to 0.2% Ni, 0.1 to 0.3% N and 0.01 to 0.20% C, and the balance Co is subjected to solution treatment, is then held at ≤850°C for a fixed time or above to form a mixed phase structure of an ε phase and nitride. With the mixed structure as the starting structure in hot working, the alloy is heated at 930 to 1,030°C at which the fine nitride is not vanished during hot working, and immediately after being heated or after held heated for a short period of time, the alloy is subjected to hot working to obtain super fine crystal grains of ≤1 μm.
      COPYRIGHT: (C)2011,JPO&INPIT
    • 解决问题的方法:提供一种氮化Co-Cr-Mo合金的晶粒细化方法,其中在含氮Co-Cr-Mo合金中,热加工前的起始结构为 通过热处理控制在含氮化物微结构的结构中,在930〜1020℃进行热加工,在热加工过程中氮化物不消失,抑制再结晶晶粒的生长,超细晶粒≤1μm 形成。 < P>解决方案:包含重量比为26-35%Cr,2至6%Mo,0至0.2%Ni,0.1至0.3%N和0.01至0.20%C的Co-Cr-Mo基合金,余量 Co进行固溶处理,然后在≤850℃保持固定时间以上,形成ε相和氮化物的混合相结构。 以混合结构作为热加工中的起始结构,合金在热处理期间在930至1030℃加热,氮化物不会消失,并且在加热之后或在持续加热短时间之后, 对该合金进行热加工以获得≤1μm的超细晶粒。 版权所有(C)2011,JPO&INPIT
    • 10. 发明专利
    • Friction correction method in hot working of columnar sample
    • 圆柱形样品热加工中的摩擦校正方法
    • JP2011115805A
    • 2011-06-16
    • JP2009273319
    • 2009-12-01
    • Tohoku Univ国立大学法人東北大学
    • LI YUNPINGONODERA EMICHIBA MASAHIKO
    • B21J5/00
    • PROBLEM TO BE SOLVED: To provide a friction correction method in hot working of a columnar sample for correcting stress affected by friction to stress peculiar to a material in the compression process of the columnar sample with an arbitrary height/diameter ratio based on a finite element analysis at simulation in a hot compression process.
      SOLUTION: A peculiar stress-strain curve of a material in an assumed simulation process is assumed to be constant to allow the variation of the stress by the friction to be easily examined, and the variation of the stress is calculated by comparison with the stress effected by the friction. When the initial height/diameter ratio of the columnar sample is constant, the stress variation by the friction in the compression process is subjected to systematically FEM analysis and a relational formula of the stress variation and a friction coefficient is formed. The stress variation is systematically analyzed by the variation of the height/diameter ratio and the friction coefficient of the columnar sample. The relational formula of the friction coefficient, the initial sample height/diameter ratio, and the stress variation is formed, and a friction coefficient in the compression process of the columnar sample with the arbitrary height/diameter ratio is decided.
      COPYRIGHT: (C)2011,JPO&INPIT
    • 要解决的问题:为了在圆柱形样品的热加工中提供摩擦校正方法,用于校正受到摩擦影响的应力与柱状样品的压缩过程中材料特有的应力,其以任意的高度/直径比为基础 在热压缩过程中的模拟中的有限元分析。

      解决方案:假设模拟过程中的材料的特殊应力 - 应变曲线被假设为恒定,以允许容易地检查摩擦的应力变化,并且通过与 由摩擦引起的应力。 当柱状样品的初始高度/直径比恒定时,通过系统有限元分析对压缩过程中的摩擦力产生的应力变化进行了系统的FEM分析,形成了应力变化和摩擦系数的关系式。 应力变化系统地通过高度/直径比和柱状样品的摩擦系数的变化进行分析。 形成摩擦系数的关系式,初始样品高度/直径比和应力变化,决定了任意高径比的柱状试样的压缩过程中的摩擦系数。 版权所有(C)2011,JPO&INPIT