会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • System and method for automatically learning flexible sprites in video layers
    • 在视频层自动学习灵活精灵的系统和方法
    • US07113185B2
    • 2006-09-26
    • US10294211
    • 2002-11-14
    • Nebojsa JojicBrendan J. Frey
    • Nebojsa JojicBrendan J. Frey
    • G06T17/00
    • G06T7/215G06T2207/10016G06T2207/30196
    • A simplified general model and an associated estimation algorithm is provided for modeling visual data such as a video sequence. Specifically, images or frames in a video sequence are represented as collections of flat moving objects that change their appearance and shape over time, and can occlude each other over time. A statistical generative model is defined for generating such visual data where parameters such as appearance bit maps and noise, shape bit-maps and variability in shape, etc., are known. Further, when unknown, these parameters are estimated from visual data without prior pre-processing by using a maximization algorithm. By parameter estimation and inference in the model, visual data is segmented into components which facilitates sophisticated applications in video or image editing, such as, for example, object removal or insertion, tracking and visual surveillance, video browsing, photo organization, video compositing, etc.
    • 提供了简化的一般模型和相关联的估计算法用于对诸如视频序列的视觉数据进行建模。 具体来说,视频序列中的图像或帧被表示为随时间改变其外观和形状的平坦移动对象的集合,并且可以随着时间而彼此闭塞。 定义了统计生成模型,用于生成这样的视觉数据,其中诸如出现位图和噪声,形状位图和形状变异等参数是已知的。 此外,当未知时,这些参数是通过使用最大化算法从视觉数据估计而没有预先预处理的。 通过模型中的参数估计和推理,视觉数据被分割成有助于视频或图像编辑中的复杂应用的组件,例如对象去除或插入,跟踪和视觉监视,视频浏览,照片组织,视频合成, 等等
    • 3. 发明授权
    • Stabilization of objects within a video sequence
    • 稳定视频序列中的对象
    • US07680353B2
    • 2010-03-16
    • US11534646
    • 2006-09-23
    • Nebojsa JojicBrendan J. Frey
    • Nebojsa JojicBrendan J. Frey
    • G06K9/40
    • G06T7/215G06T2207/10016G06T2207/30196
    • A simplified general model and an associated estimation algorithm is provided for modeling visual data such as a video sequence. Specifically, images or frames in a video sequence are represented as collections of flat moving objects that change their appearance and shape over time, and can occlude each other over time. A statistical generative model is defined for generating such visual data where parameters such as appearance bit maps and noise, shape bit-maps and variability in shape, etc., are known. Further, when unknown, these parameters are estimated from visual data without prior pre-processing by using a maximization algorithm. By parameter estimation and inference in the model, visual data is segmented into components which facilitates sophisticated applications in video or image editing, such as, for example, object removal or insertion, tracking and visual surveillance, video browsing, photo organization, video compositing, etc.
    • 提供了简化的一般模型和相关联的估计算法用于对诸如视频序列的视觉数据进行建模。 具体来说,视频序列中的图像或帧被表示为随时间改变其外观和形状的平坦移动对象的集合,并且可以随着时间而彼此闭塞。 定义了统计生成模型,用于生成这样的视觉数据,其中诸如出现位图和噪声,形状位图和形状变异等参数是已知的。 此外,当未知时,这些参数是通过使用最大化算法从视觉数据估计而没有预先预处理的。 通过模型中的参数估计和推理,视觉数据被分割成有助于视频或图像编辑中的复杂应用的组件,例如对象去除或插入,跟踪和视觉监视,视频浏览,照片组织,视频合成, 等等
    • 4. 发明授权
    • Generative models for constructing panoramas from an image sequence
    • 用于从图像序列构建全景图的生成模型
    • US07940264B2
    • 2011-05-10
    • US12794765
    • 2010-06-06
    • Nebojsa JojicBrendan J. Frey
    • Nebojsa JojicBrendan J. Frey
    • G06T17/00
    • G06T7/215G06T2207/10016G06T2207/30196
    • A simplified general model and an associated estimation algorithm is provided for modeling visual data such as a video sequence. Specifically, images or frames in a video sequence are represented as collections of flat moving objects that change their appearance and shape over time, and can occlude each other over time. A statistical generative model is defined for generating such visual data where parameters such as appearance bit maps and noise, shape bit-maps and variability in shape, etc., are known. Further, when unknown, these parameters are estimated from visual data without prior pre-processing by using a maximization algorithm. By parameter estimation and inference in the model, visual data is segmented into components which facilitates sophisticated applications in video or image editing, such as, for example, object removal or insertion, tracking and visual surveillance, video browsing, photo organization, video compositing, etc.
    • 提供了简化的一般模型和相关联的估计算法用于对诸如视频序列的视觉数据进行建模。 具体来说,视频序列中的图像或帧被表示为随时间改变其外观和形状的平坦移动对象的集合,并且可以随着时间而彼此闭塞。 定义了统计生成模型,用于生成这样的视觉数据,其中诸如出现位图和噪声,形状位图和形状变异等参数是已知的。 此外,当未知时,这些参数是通过使用最大化算法从视觉数据估计而没有预先预处理的。 通过模型中的参数估计和推理,视觉数据被分割成有助于视频或图像编辑中的复杂应用的组件,例如对象去除或插入,跟踪和视觉监视,视频浏览,照片组织,视频合成, 等等
    • 5. 发明授权
    • Modeling variable illumination in an image sequence
    • 在图像序列中建模可变照明
    • US07750904B2
    • 2010-07-06
    • US11534649
    • 2006-09-23
    • Nebojsa JojicBrendan J. Frey
    • Nebojsa JojicBrendan J. Frey
    • G06T17/00
    • G06T7/215G06T2207/10016G06T2207/30196
    • A simplified general model and an associated estimation algorithm is provided for modeling visual data such as a video sequence. Specifically, images or frames in a video sequence are represented as collections of flat moving objects that change their appearance and shape over time, and can occlude each other over time. A statistical generative model is defined for generating such visual data where parameters such as appearance bit maps and noise, shape bit-maps and variability in shape, etc., are known. Further, when unknown, these parameters are estimated from visual data without prior pre-processing by using a maximization algorithm. By parameter estimation and inference in the model, visual data is segmented into components which facilitates sophisticated applications in video or image editing, such as, for example, object removal or insertion, tracking and visual surveillance, video browsing, photo organization, video compositing, etc.
    • 提供了简化的一般模型和相关联的估计算法用于对诸如视频序列的视觉数据进行建模。 具体来说,视频序列中的图像或帧被表示为随时间改变其外观和形状的平坦移动对象的集合,并且可以随着时间而彼此闭塞。 定义了统计生成模型,用于生成这样的视觉数据,其中诸如出现位图和噪声,形状位图和形状变异等参数是已知的。 此外,当未知时,这些参数是通过使用最大化算法从视觉数据估计而没有预先预处理的。 通过模型中的参数估计和推理,视觉数据被分割成有助于视频或图像编辑中的复杂应用的组件,例如对象去除或插入,跟踪和视觉监视,视频浏览,照片组织,视频合成, 等等
    • 6. 发明授权
    • Modeling reflections within an image sequence
    • 建模图像序列中的反射
    • US07750903B2
    • 2010-07-06
    • US11534647
    • 2006-09-23
    • Nebojsa JojicBrendan J. Frey
    • Nebojsa JojicBrendan J. Frey
    • G06T17/00
    • G06T7/215G06T2207/10016G06T2207/30196
    • A simplified general model and an associated estimation algorithm is provided for modeling visual data such as a video sequence. Specifically, images or frames in a video sequence are represented as collections of flat moving objects that change their appearance and shape over time, and can occlude each other over time. A statistical generative model is defined for generating such visual data where parameters such as appearance bit maps and noise, shape bit-maps and variability in shape, etc., are known. Further, when unknown, these parameters are estimated from visual data without prior pre-processing by using a maximization algorithm. By parameter estimation and inference in the model, visual data is segmented into components which facilitates sophisticated applications in video or image editing, such as, for example, object removal or insertion, tracking and visual surveillance, video browsing, photo organization, video compositing, etc.
    • 提供了简化的一般模型和相关联的估计算法用于对诸如视频序列的视觉数据进行建模。 具体来说,视频序列中的图像或帧被表示为随时间改变其外观和形状的平坦移动对象的集合,并且可以随着时间而彼此闭塞。 定义了统计生成模型,用于生成这样的视觉数据,其中诸如出现位图和噪声,形状位图和形状变异等参数是已知的。 此外,当未知时,这些参数是通过使用最大化算法从视觉数据估计而没有预先预处理的。 通过模型中的参数估计和推理,视觉数据被分割成有助于视频或图像编辑中的复杂应用的组件,例如对象去除或插入,跟踪和视觉监视,视频浏览,照片组织,视频合成, 等等
    • 7. 发明申请
    • GENERATIVE MODELS FOR CONSTRUCTING PANORAMAS FROM AN IMAGE SEQUENCE
    • 从图像序列构建全景的一般模型
    • US20100238266A1
    • 2010-09-23
    • US12794765
    • 2010-06-06
    • Nebojsa JojicBrendan J. Frey
    • Nebojsa JojicBrendan J. Frey
    • H04N7/00
    • G06T7/215G06T2207/10016G06T2207/30196
    • A simplified general model and an associated estimation algorithm is provided for modeling visual data such as a video sequence. Specifically, images or frames in a video sequence are represented as collections of flat moving objects that change their appearance and shape over time, and can occlude each other over time. A statistical generative model is defined for generating such visual data where parameters such as appearance bit maps and noise, shape bit-maps and variability in shape, etc., are known. Further, when unknown, these parameters are estimated from visual data without prior pre-processing by using a maximization algorithm. By parameter estimation and inference in the model, visual data is segmented into components which facilitates sophisticated applications in video or image editing, such as, for example, object removal or insertion, tracking and visual surveillance, video browsing, photo organization, video compositing, etc.
    • 提供了简化的一般模型和相关联的估计算法用于对诸如视频序列的视觉数据进行建模。 具体来说,视频序列中的图像或帧被表示为随时间改变其外观和形状的平坦移动对象的集合,并且可以随着时间而彼此闭塞。 定义了统计生成模型,用于生成这样的视觉数据,其中诸如出现位图和噪声,形状位图和形状变异等参数是已知的。 此外,当未知时,这些参数是通过使用最大化算法从视觉数据估计而没有预先预处理的。 通过模型中的参数估计和推理,视觉数据被分割成有助于视频或图像编辑中的复杂应用的组件,例如对象去除或插入,跟踪和视觉监视,视频浏览,照片组织,视频合成, 等等
    • 8. 发明授权
    • Interactive montages of sprites for indexing and summarizing video
    • 用于索引和总结视频的精灵互动蒙太奇
    • US07982738B2
    • 2011-07-19
    • US11004760
    • 2004-12-01
    • Nebojsa JojicChris Pal
    • Nebojsa JojicChris Pal
    • G06T13/00
    • G06F17/30811G06F17/30843G06F17/30852G11B27/034G11B27/28G11B27/34H04N21/44008H04N21/44029H04N21/45452H04N21/8193H04N21/8549Y10S345/95
    • A “Video Browser” provides interactive browsing of unique events occurring within an overall video recording. In particular, the Video Browser processes the video to generate a set of video sprites representing unique events occurring within the overall period of the video. These unique events include, for example, motion events, security events, or other predefined event types, occurring within all or part of the total period covered by the video. Once the video has been processed to identify the sprites, the sprites are then arranged over a background image extracted from the video to create an interactive static video montage. The interactive video montage illustrates all events occurring within the video in a single static frame. User selection of sprites within the montage causes either playback of a portion of the video in which the selected sprites were identified, or concurrent playback of the selected sprites within a dynamic video montage.
    • “视频浏览器”提供了在整个视频录制中发生的独特事件的交互式浏览。 特别地,视频浏览器处理视频以生成表示在视频的整个周期内发生的唯一事件的一组视频精灵。 这些独特的事件包括例如运动事件,安全事件或其他预定事件类型,发生在视频所涵盖的整个周期的全部或部分内。 一旦视频被处理以识别精灵,则将精灵布置在从视频提取的背景图像上,以创建交互式静态视频蒙太奇。 交互式视频蒙太奇在单个静态帧中说明视频内发生的所有事件。 蒙太奇内的精灵的用户选择导致播放所选择的精灵被识别的视频的一部分,或动态视频蒙太奇中所选精灵的并发回放。
    • 9. 发明授权
    • Capturing long-range correlations in patch models
    • 在补丁模型中捕获长距离相关性
    • US07978906B2
    • 2011-07-12
    • US11763136
    • 2007-06-14
    • Nebojsa JojicVincent Cheung
    • Nebojsa JojicVincent Cheung
    • G06K9/62
    • G06K9/469G06K9/6255
    • Systems and methodologies for modeling data in accordance with one or more embodiments disclosed herein are operable to receive input data, create data patches from the input data, obtain long-range correlations between the data patches, and model the input data as a patch model based at least in part on the data patches and the long-range correlations. Various learning algorithms are additionally provided for refining the patch model created in accordance with one or more embodiments disclosed herein. Further, systems and methodologies for synthesizing a patch model created in accordance with various aspects of the present invention with a set of test data to perform a transformation represented by the patch model on the test data are provided.
    • 根据本文公开的一个或多个实施例的用于建模数据的系统和方法可操作用于接收输入数据,从输入数据创建数据补丁,获得数据补丁之间的长距离相关性,并将输入数据建模为基于补丁模型 至少部分地基于数据补丁和长距离相关性。 另外提供了各种学习算法,用于细化根据本文公开的一个或多个实施例创建的贴片模型。 此外,提供了用于根据本发明的各个方面创建的用于合成测试数据的一组测试数据来进行由测试数据上的补丁模型表示的变换的补丁模型的系统和方法。
    • 10. 发明授权
    • System and method for fast on-line learning of transformed hidden Markov models
    • 用于快速在线学习变换隐马尔科夫模型的系统和方法
    • US07657102B2
    • 2010-02-02
    • US10649382
    • 2003-08-27
    • Nebojsa JojicNemanja Petrovic
    • Nebojsa JojicNemanja Petrovic
    • G06K9/62G10L15/06
    • G11B27/28G06K9/00711G06K9/6297
    • A fast variational on-line learning technique for training a transformed hidden Markov model. A simplified general model and an associated estimation algorithm is provided for modeling visual data such as a video sequence. Specifically, once the model has been initialized, an expectation-maximization (“EM”) algorithm is used to learn the one or more object class models, so that the video sequence has high marginal probability under the model. In the expectation step (the “E-Step”), the model parameters are assumed to be correct, and for an input image, probabilistic inference is used to fill in the values of the unobserved or hidden variables, e.g., the object class and appearance. In one embodiment of the invention, a Viterbi algorithm and a latent image is employed for this purpose. In the maximization step (the “M-Step”), the model parameters are adjusted using the values of the unobserved variables calculated in the previous E-step.
    • 一种快速变化的在线学习技术,用于训练变换后的隐马尔可夫模型。 提供了简化的一般模型和相关联的估计算法用于对诸如视频序列的视觉数据进行建模。 具体来说,一旦模型被初始化,使用期望最大化(“EM”)算法来学习一个或多个对象类模型,使得视频序列在该模型下具有高边际概率。 在期望步骤(“E步骤”)中,假设模型参数是正确的,对于输入图像,使用概率推断来填充未观察或隐藏变量的值,例如对象类和 出现。 在本发明的一个实施例中,为此目的采用维特比算法和潜像。 在最大化步骤(“M步骤”)中,使用在先前E步骤中计算的未观察到的变量的值来调整模型参数。