会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Location based full address entry via speech recognition
    • 通过语音识别的基于位置的完整地址输入
    • US08315799B2
    • 2012-11-20
    • US12777924
    • 2010-05-11
    • Neal J. AlewineJohn W. EckhartPeder A. OlsenKenneth D. White
    • Neal J. AlewineJohn W. EckhartPeder A. OlsenKenneth D. White
    • G01C21/32
    • G01C21/3608
    • A computer implemented method, system and/or computer program product confirm an orally entered address to a mobile navigation device. The mobile navigation device receives a global positioning system (GPS) root address component from a GPS. The GPS root address component is a text name of a root location at which a mobile navigation device is currently located. The mobile navigation device receives an orally entered address that comprises an oral root address component and an oral subunit component of the oral root address component. In response to the converted root address component matching the GPS root address component, the orally entered address is partitioned into the oral subunit component and the oral root address component, and any additional speech-to-text conversion of the orally entered address after the oral root address component is terminated.
    • 计算机实现的方法,系统和/或计算机程序产品向口头输入的地址确认移动导航装置。 移动导航装置从GPS接收全球定位系统(GPS)根地址分量。 GPS根地址组件是移动导航设备当前所在的根位置的文本名称。 移动导航装置接收口头输入的地址,该地址包括口语根地址组件和口语根地址组件的口服子单元组件。 响应于匹配GPS根地址组件的转换的根地址组件,口头输入的地址被划分成口语子单元组件和口语根地址组件,以及口头地址之后的口头输入地址的任何附加语音到文本转换 根地址组件终止。
    • 4. 发明申请
    • PRIVACY-SENSITIVE SPEECH MODEL CREATION VIA AGGREGATION OF MULTIPLE USER MODELS
    • 通过多种用户模型的融合进行隐私认知语音模式创建
    • US20140129226A1
    • 2014-05-08
    • US13668662
    • 2012-11-05
    • Antonio R. LeePetr NovakPeder A. OlsenVaibhava Goel
    • Antonio R. LeePetr NovakPeder A. OlsenVaibhava Goel
    • G10L15/04
    • G10L15/065G06F21/6245G06F21/78G10L15/04H04L63/0407
    • Techniques disclosed herein include systems and methods for privacy-sensitive training data collection for updating acoustic models of speech recognition systems. In one embodiment, the system locally creates adaptation data from raw audio data. Such adaptation can include derived statistics and/or acoustic model update parameters. The derived statistics and/or updated acoustic model data can then be sent to a speech recognition server or third-party entity. Since the audio data and transcriptions are already processed, the statistics or acoustic model data is devoid of any information that could be human-readable or machine readable such as to enable reconstruction of audio data. Thus, such converted data sent to a server does not include personal or confidential information. Third-party servers can then continually update speech models without storing personal and confidential utterances of users.
    • 本文公开的技术包括用于更新语音识别系统的声学模型的用于隐私敏感的训练数据收集的系统和方法。 在一个实施例中,系统从原始音频数据本地创建适配数据。 这种适应可以包括导出的统计和/或声学模型更新参数。 导出的统计和/或更新的声学模型数据随后可被发送到语音识别服务器或第三方实体。 由于已经处理了音频数据和转录,所以统计数据或声学模型数据没有任何可能是人可读或机器可读的信息,例如能够重建音频数据。 因此,发送到服务器的转换数据不包括个人或机密信息。 然后,第三方服务器可以不间断地更新语音模型,而不会存储用户的个人和机密话语。
    • 6. 发明授权
    • Model restructuring for client and server based automatic speech recognition
    • 基于客户端和服务器的自动语音识别模型重组
    • US08635067B2
    • 2014-01-21
    • US12964433
    • 2010-12-09
    • Pierre DogninVaibhava GoelJohn R. HersheyPeder A. Olsen
    • Pierre DogninVaibhava GoelJohn R. HersheyPeder A. Olsen
    • G10L15/14
    • G10L15/144G10L15/30G10L2015/0636G10L2015/085
    • Access is obtained to a large reference acoustic model for automatic speech recognition. The large reference acoustic model has L states modeled by L mixture models, and the large reference acoustic model has N components. A desired number of components Nc, less than N, to be used in a restructured acoustic model derived from the reference acoustic model, is identified. The desired number of components Nc is selected based on a computing environment in which the restructured acoustic model is to be deployed. The restructured acoustic model also has L states. For each given one of the L mixture models in the reference acoustic model, a merge sequence is built which records, for a given cost function, sequential mergers of pairs of the components associated with the given one of the mixture models. A portion of the Nc components is assigned to each of the L states in the restructured acoustic model. The restructured acoustic model is built by, for each given one of the L states in the restructured acoustic model, applying the merge sequence to a corresponding one of the L mixture models in the reference acoustic model until the portion of the Nc components assigned to the given one of the L states is achieved.
    • 获得用于自动语音识别的大参考声学模型。 大参考声学模型具有由L个混合模型建模的L状态,并且大的参考声学模型具有N个分量。 识别在从参考声学模型导出的重构声学模型中使用的期望数量的小于N的分量Nc。 基于要重新组织的声学模型要部署的计算环境来选择所需数量的分量Nc。 重组的声学模型也有L个状态。 对于参考声学模型中的每个给定的一个L混合模型,构建合并序列,其针对给定的成本函数记录与给定的混合模型相关联的成分对的顺序合并。 Nc分量的一部分被分配给重构的声学模型中的每个L状态。 重构的声学模型由重构的声学模型中的每个给定的一个L状态构建,将合并序列应用于参考声学模型中的L个混合模型中的对应的一个,直到分配给 给出了一个L状态。
    • 9. 发明申请
    • MODEL RESTRUCTURING FOR CLIENT AND SERVER BASED AUTOMATIC SPEECH RECOGNITION
    • 基于客户端和服务器的自动语音识别的模型重构
    • US20120150536A1
    • 2012-06-14
    • US12964433
    • 2010-12-09
    • Pierre DogninVaibhava GoelJohn R. HersheyPeder A. Olsen
    • Pierre DogninVaibhava GoelJohn R. HersheyPeder A. Olsen
    • G10L15/00
    • G10L15/144G10L15/30G10L2015/0636G10L2015/085
    • Access is obtained to a large reference acoustic model for automatic speech recognition. The large reference acoustic model has L states modeled by L mixture models, and the large reference acoustic model has N components. A desired number of components Nc, less than N, to be used in a restructured acoustic model derived from the reference acoustic model, is identified. The desired number of components Nc is selected based on a computing environment in which the restructured acoustic model is to be deployed. The restructured acoustic model also has L states. For each given one of the L mixture models in the reference acoustic model, a merge sequence is built which records, for a given cost function, sequential mergers of pairs of the components associated with the given one of the mixture models. A portion of the Nc components is assigned to each of the L states in the restructured acoustic model. The restructured acoustic model is built by, for each given one of the L states in the restructured acoustic model, applying the merge sequence to a corresponding one of the L mixture models in the reference acoustic model until the portion of the Nc components assigned to the given one of the L states is achieved.
    • 获得用于自动语音识别的大参考声学模型。 大参考声学模型具有由L个混合模型建模的L状态,并且大的参考声学模型具有N个分量。 识别在从参考声学模型导出的重构声学模型中使用的期望数量的小于N的分量Nc。 基于要重新组织的声学模型要部署的计算环境来选择所需数量的分量Nc。 重组的声学模型也有L个状态。 对于参考声学模型中的每个给定的一个L混合模型,构建合并序列,其针对给定的成本函数记录与给定的混合模型相关联的成分对的顺序合并。 Nc分量的一部分被分配给重构的声学模型中的每个L状态。 重构的声学模型由重构的声学模型中的每个给定的一个L状态构建,将合并序列应用于参考声学模型中的L个混合模型中的对应的一个,直到分配给 给出了一个L状态。