会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • MODEL RESTRUCTURING FOR CLIENT AND SERVER BASED AUTOMATIC SPEECH RECOGNITION
    • 基于客户端和服务器的自动语音识别的模型重构
    • US20120150536A1
    • 2012-06-14
    • US12964433
    • 2010-12-09
    • Pierre DogninVaibhava GoelJohn R. HersheyPeder A. Olsen
    • Pierre DogninVaibhava GoelJohn R. HersheyPeder A. Olsen
    • G10L15/00
    • G10L15/144G10L15/30G10L2015/0636G10L2015/085
    • Access is obtained to a large reference acoustic model for automatic speech recognition. The large reference acoustic model has L states modeled by L mixture models, and the large reference acoustic model has N components. A desired number of components Nc, less than N, to be used in a restructured acoustic model derived from the reference acoustic model, is identified. The desired number of components Nc is selected based on a computing environment in which the restructured acoustic model is to be deployed. The restructured acoustic model also has L states. For each given one of the L mixture models in the reference acoustic model, a merge sequence is built which records, for a given cost function, sequential mergers of pairs of the components associated with the given one of the mixture models. A portion of the Nc components is assigned to each of the L states in the restructured acoustic model. The restructured acoustic model is built by, for each given one of the L states in the restructured acoustic model, applying the merge sequence to a corresponding one of the L mixture models in the reference acoustic model until the portion of the Nc components assigned to the given one of the L states is achieved.
    • 获得用于自动语音识别的大参考声学模型。 大参考声学模型具有由L个混合模型建模的L状态,并且大的参考声学模型具有N个分量。 识别在从参考声学模型导出的重构声学模型中使用的期望数量的小于N的分量Nc。 基于要重新组织的声学模型要部署的计算环境来选择所需数量的分量Nc。 重组的声学模型也有L个状态。 对于参考声学模型中的每个给定的一个L混合模型,构建合并序列,其针对给定的成本函数记录与给定的混合模型相关联的成分对的顺序合并。 Nc分量的一部分被分配给重构的声学模型中的每个L状态。 重构的声学模型由重构的声学模型中的每个给定的一个L状态构建,将合并序列应用于参考声学模型中的L个混合模型中的对应的一个,直到分配给 给出了一个L状态。
    • 2. 发明授权
    • Model restructuring for client and server based automatic speech recognition
    • 基于客户端和服务器的自动语音识别模型重组
    • US08635067B2
    • 2014-01-21
    • US12964433
    • 2010-12-09
    • Pierre DogninVaibhava GoelJohn R. HersheyPeder A. Olsen
    • Pierre DogninVaibhava GoelJohn R. HersheyPeder A. Olsen
    • G10L15/14
    • G10L15/144G10L15/30G10L2015/0636G10L2015/085
    • Access is obtained to a large reference acoustic model for automatic speech recognition. The large reference acoustic model has L states modeled by L mixture models, and the large reference acoustic model has N components. A desired number of components Nc, less than N, to be used in a restructured acoustic model derived from the reference acoustic model, is identified. The desired number of components Nc is selected based on a computing environment in which the restructured acoustic model is to be deployed. The restructured acoustic model also has L states. For each given one of the L mixture models in the reference acoustic model, a merge sequence is built which records, for a given cost function, sequential mergers of pairs of the components associated with the given one of the mixture models. A portion of the Nc components is assigned to each of the L states in the restructured acoustic model. The restructured acoustic model is built by, for each given one of the L states in the restructured acoustic model, applying the merge sequence to a corresponding one of the L mixture models in the reference acoustic model until the portion of the Nc components assigned to the given one of the L states is achieved.
    • 获得用于自动语音识别的大参考声学模型。 大参考声学模型具有由L个混合模型建模的L状态,并且大的参考声学模型具有N个分量。 识别在从参考声学模型导出的重构声学模型中使用的期望数量的小于N的分量Nc。 基于要重新组织的声学模型要部署的计算环境来选择所需数量的分量Nc。 重组的声学模型也有L个状态。 对于参考声学模型中的每个给定的一个L混合模型,构建合并序列,其针对给定的成本函数记录与给定的混合模型相关联的成分对的顺序合并。 Nc分量的一部分被分配给重构的声学模型中的每个L状态。 重构的声学模型由重构的声学模型中的每个给定的一个L状态构建,将合并序列应用于参考声学模型中的L个混合模型中的对应的一个,直到分配给 给出了一个L状态。
    • 3. 发明申请
    • Method of Text Classification Using Discriminative Topic Transformation
    • 使用歧视主题变换的文本分类方法
    • US20130317804A1
    • 2013-11-28
    • US13479656
    • 2012-05-24
    • John R. HersheyJonathan Le Roux
    • John R. HersheyJonathan Le Roux
    • G06F17/27
    • G06F17/30286
    • Text is classified by determining text features from the text, and transforming the text features to topic features. Scores are determined for each topic features using a discriminative topic model. The model includes a classifier that operates on the topic features, wherein the topic features are determined by the transformation from the text features, and the transformation is optimized to maximize the scores of a correct class relative to the scores of incorrect classes. Then, a class label with a highest score is selected for the text. In situations where the classes are organized in a hierarchical structure, the discriminative topic models apply to classes at each level conditioned on previous levels and scores are combined across levels to evaluate the highest scoring class labels.
    • 通过从文本中确定文本特征并将文本特征转换为主题特征来分类文本。 使用歧视主题模型为每个主题功能确定得分。 该模型包括对主题特征进行操作的分类器,其中主题特征由文本特征的变换确定,并且优化变换以最大化相对于不正确类的分数的正确类的分数。 然后,为文本选择具有最高分数的类标签。 在类别以层次​​结构组织的情况下,歧视主题模型适用于以前级别条件下的每个级别的课程,并且分数在各级之间进行组合,以评估最高评分类标签。
    • 5. 发明授权
    • Audio-visual control system
    • 视听系统
    • US07518631B2
    • 2009-04-14
    • US11168124
    • 2005-06-28
    • John R. HersheyZhengyou Zhang
    • John R. HersheyZhengyou Zhang
    • H04N7/14
    • G10L15/26
    • A visual control system controls a controlled component. In one embodiment, the visual control system controls the controlled component based on a visual location of a user. In another embodiment, input from a visual perception device is used to provide focus control for an audio input device. In additional embodiments, the visual control system stops, starts or suppresses speech recognition or other audio functions when the direction of the sound detected by the audio input device is not coming from the user's visual location.
    • 视觉控制系统控制受控组件。 在一个实施例中,视觉控制系统基于用户的视觉位置来控制受控组件。 在另一个实施例中,来自视觉感知设备的输入被用于为音频输入设备提供焦点控制。 在另外的实施例中,当由音频输入设备检测到的声音的方向不是来自用户的视觉位置时,视觉控制系统停止,启动或抑制语音识别或其他音频功能。
    • 8. 发明授权
    • Method of text classification using discriminative topic transformation
    • 使用歧视主题转换的文本分类方法
    • US09069798B2
    • 2015-06-30
    • US13479656
    • 2012-05-24
    • John R. HersheyJonathan Le Roux
    • John R. HersheyJonathan Le Roux
    • G06F19/24G06F17/30
    • G06F17/30286
    • Text is classified by determining text features from the text, and transforming the text features to topic features. Scores are determined for each topic features using a discriminative topic model. The model includes a classifier that operates on the topic features, wherein the topic features are determined by the transformation from the text features, and the transformation is optimized to maximize the scores of a correct class relative to the scores of incorrect classes. Then, a class label with a highest score is selected for the text. In situations where the classes are organized in a hierarchical structure, the discriminative topic models apply to classes at each level conditioned on previous levels and scores are combined across levels to evaluate the highest scoring class labels.
    • 通过从文本中确定文本特征并将文本特征转换为主题特征来分类文本。 使用歧视主题模型为每个主题功能确定得分。 该模型包括对主题特征进行操作的分类器,其中主题特征由文本特征的变换确定,并且优化变换以最大化相对于不正确类的分数的正确类的分数。 然后,为文本选择具有最高分数的类标签。 在类别以层次​​结构组织的情况下,歧视主题模型适用于以前级别条件下的每个级别的课程,并且分数在各级之间进行组合,以评估最高评分类标签。