会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Ultrathin high-K gate dielectric with favorable interface properties for improved semiconductor device performance
    • 具有良好的界面性能的超薄高K栅极电介质,可提高半导体器件的性能
    • US06911707B2
    • 2005-06-28
    • US09207972
    • 1998-12-09
    • Mark I. GardnerDim-Lee KwongH. Jim Fulford, Jr.
    • Mark I. GardnerDim-Lee KwongH. Jim Fulford, Jr.
    • H01L21/28H01L21/314H01L29/51H01L29/76
    • H01L21/28185H01L21/28194H01L21/28202H01L21/3144H01L29/513H01L29/517H01L29/518
    • An ultrathin gate dielectric having a graded dielectric constant and a method for forming the same are provided. The gate dielectric is believed to allow enhanced performance of semiconductor devices including transistors and dual-gate memory cells. A thin nitrogen-containing oxide, preferably having a thickness of less than about 10 angstroms, is formed on a semiconductor substrate. A silicon nitride layer having a thickness of less than about 30 angstroms may be formed over the nitrogen-containing oxide. The oxide and nitride layers are annealed in ammonia and nitrous oxide ambients, and the nitride layer thickness is reduced using a flowing-gas etch process. The resulting two-layer gate dielectric is believed to provide increased capacitance as compared to a silicon dioxide dielectric while maintaining favorable interface properties with the underlying substrate. In an alternative embodiment, a different high dielectric constant material is substituted for the silicon nitride. Alternatively, both nitride and a different high dielectric constant material may be used so that a three-layer dielectric is formed.
    • 提供具有渐变介电常数的超薄栅极电介质及其形成方法。 认为栅极电介质允许包括晶体管和双栅极存储器单元的半导体器件的增强的性能。 在半导体衬底上形成薄的含氮氧化物,优选具有小于约10埃的厚度。 可以在含氮氧化物上形成厚度小于约30埃的氮化硅层。 氧化物和氮化物层在氨和一氧化二氮环境中退火,并且使用流动气体蚀刻工艺来减少氮化物层的厚度。 与二氧化硅电介质相比,所得到的双层栅极电介质被认为提供增加的电容,同时保持与底层衬底的有利的界面性质。 在替代实施例中,用不同的高介电常数材料代替氮化硅。 或者,可以使用氮化物和不同的高介电常数材料,从而形成三层电介质。
    • 5. 发明授权
    • Method of forming ultra thin gate dielectric for high performance semiconductor devices
    • 形成用于高性能半导体器件的超薄栅极电介质的方法
    • US06245652B1
    • 2001-06-12
    • US09598531
    • 2000-06-21
    • Mark I. GardnerDim-Lee KwongH. Jim Fulford
    • Mark I. GardnerDim-Lee KwongH. Jim Fulford
    • H01L213205
    • H01L21/28185H01L21/28202H01L29/513H01L29/517H01L29/518
    • The present invention is directed to a semiconductor device having an ultra thin, reliable gate dielectric and a method for making same. In one illustrative embodiment, the present method comprises forming a first layer of nitrogen doped silicon dioxide above a semiconducting substrate, reducing the thickness of the first layer, forming a second layer comprised of a material having a dielectric constant greater than seven above the first layer of silicon dioxide. The method further comprises forming a third layer comprised of a gate conductor material above the second layer, and patterning the first, second and third layers to define a gate conductor and a composite gate dielectric comprised of the first and second layers, and forming at least one source/drain region. The semiconductor device has a composite gate dielectric comprised of a first process layer comprised of a nitrogen doped oxide and a second process layer comprised of a material having a dielectric constant greater than seven. The device further comprises a gate conductor positioned above the composite gate dielectric, and at least one source/drain region formed in the substrate.
    • 本发明涉及具有超薄,可靠的栅极电介质的半导体器件及其制造方法。 在一个说明性实施例中,本方法包括在半导体衬底上形成氮掺杂二氧化硅的第一层,减小第一层的厚度,形成第二层,第二层由介电常数大于第一层以上的材料构成 的二氧化硅。 该方法还包括在第二层上形成由栅极导体材料构成的第三层,以及对第一层,第二层和第三层进行构图以限定由第一层和第二层构成的栅极导体和复合栅极电介质,并形成至少 一个源/漏区。 该半导体器件具有复合栅极电介质,该复合栅极电介质由包含氮掺杂氧化物的第一工艺层和由介电常数大于7的材料构成的第二工艺层组成。 该器件还包括位于复合栅极电介质上方的栅极导体,以及形成在衬底中的至少一个源极/漏极区。
    • 7. 发明授权
    • Method for achieving a highly reliable oxide film
    • 实现高可靠性氧化膜的方法
    • US5591681A
    • 1997-01-07
    • US253771
    • 1994-06-03
    • Dirk J. WristersDim-Lee KwongH. Jim Fulford, Jr.
    • Dirk J. WristersDim-Lee KwongH. Jim Fulford, Jr.
    • C23C16/56H01L21/28H01L21/318H01L21/324H01L21/336H01L21/8247H01L29/51H01L29/78H01L29/788H01L29/792H01L21/3115
    • H01L21/28185C23C16/56H01L27/11521H01L27/11524H01L29/518H01L21/28194H01L21/28202H01L21/28211Y10S438/909Y10S438/954
    • High quality oxides utilized in tunnel oxides and CMOS gate oxides are formed using a process that includes annealing a semiconductor substrate, after the oxide has been formed, in an ambient comprised of NO to form a surface layer in the oxide containing a concentration of nitrogen. A high-quality tunnel oxide, suitable for EEPROM devices, is formed upon a surface region of a semiconductor body over a heavily-doped N+ layer by first oxidizing the semiconductor body to form an oxide upon the surface region of the semiconductor body over the heavily-doped N+ layer. Next, the semiconductor body is annealed, under a gettering ambient, to densify the oxide and to dope the oxide at its surface and for a portion thereinto near its surface with a gettering agent. The semiconductor body is then oxidized, under an oxidizing ambient, to thicken the oxide. The annealing step in NO improves characteristics for both the gate and tunnel oxides of the device at a temperature substantially reduced from prior art methods and in an ambient atmosphere containing significantly more NO. The NO anneal can be performed in a variety of ways including an RTP anneal, a furnace anneal and can be performed on processes where the oxides are formed using CVD and PECVD.
    • 在隧道氧化物和CMOS栅极氧化物中使用的高质量氧化物使用包括在形成氧化物的氧化物在由NO组成的环境中退火半导体衬底以在含有一定浓度的氮的氧化物中形成表面层的工艺来形成。 通过首先氧化半导体体以在半导体主体的表面区域上形成氧化物,在重掺杂的N +层上的半导体本体的表面区域上形成适用于EEPROM器件的高品质隧道氧化物, 掺杂的N +层。 接下来,在吸气环境下,将半导体本体退火以使氧化物致密化并在其表面上掺杂氧化物,并在其表面附近用吸杂剂掺杂一部分。 然后在氧化环境下氧化半导体体,使氧化物变稠。 NO中的退火步骤在从现有技术方法显着降低的温度下和在含有显着更多的NO的环境气氛中改善器件的栅极和隧道氧化物的特性。 NO退火可以以各种方式进行,包括RTP退火,炉退火,并且可以在使用CVD和PECVD形成氧化物的工艺上进行。
    • 9. 发明授权
    • Method for forming metal silicide on a semiconductor surface with
minimal effect on pre-existing implants
    • 在半导体表面上形成金属硅化物的方法,对预先存在的植入物具有最小的影响
    • US5679585A
    • 1997-10-21
    • US746774
    • 1996-11-15
    • Mark I. GardnerFred N. HauseDerick J. WristersDim-Lee Kwong
    • Mark I. GardnerFred N. HauseDerick J. WristersDim-Lee Kwong
    • H01L21/285H01L21/283
    • H01L21/28518Y10S438/909
    • An method is provided for fabricating a metal silicide upon a semiconductor topography. The method advantageously performs the anneal cycles at a substantially lower temperature. By employing a high pressure anneal chamber, temperature equilibrium is achieved across the semiconductor topography and especially in small silicide formation areas. The higher pressure helps ensure thermal contact of heated, flowing gas across relatively small geometries in which silicide is to be formed. Substantial metal silicide formation can occur at the higher pressures even under relatively lower temperature conditions. The lower temperature process helps ensure that pre-existing implant regions remain at their initial position. The present metal silicide process and lower temperature anneal is therefore well suited to avoid impurity migration problems such as, for example, threshold skew, parasitic junction capacitance enhancement, and gate oxide degradation.
    • 提供了一种在半导体形貌上制造金属硅化物的方法。 该方法有利地在基本上较低的温度下进行退火循环。 通过采用高压退火室,在半导体形貌特别是在小的硅化物形成区域中实现了温度平衡。 较高的压力有助于确保加热的流动气体在要形成硅化物的较小几何形状上的热接触。 即使在相对较低的温度条件下,也可能在更高的压力下发生大量金属硅化物的形成。 较低的温度过程有助于确保预先存在的植入区域保持在其初始位置。 因此,目前的金属硅化物工艺和较低温度退火非常适合于避免杂质迁移问题,例如阈值偏移,寄生结电容增强和栅极氧化物降解。