会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明申请
    • High aspect ratio C-MEMS architecture
    • 高纵横比C-MEMS架构
    • US20050255233A1
    • 2005-11-17
    • US11057389
    • 2005-02-11
    • Marc MadouChunlei WangGuangyao JiaLili TaherabadiBenjamin ParkRabih Zaouk
    • Marc MadouChunlei WangGuangyao JiaLili TaherabadiBenjamin ParkRabih Zaouk
    • B05D5/12H01M4/58H01M4/583H01M4/66
    • H01M4/583H01M4/663
    • C-MEMS architecture having high aspect ratio carbon structures and improved systems and methods for producing high aspect ratio C-MEMS structures are provided. Specifically, high aspect ratio carbon structures are microfabricated by pyrolyzing a patterned carbon precursor polymer. Pyrolysing the polymer preferably comprises a multi-step process in an atmosphere of inert and forming gas at high temperatures that trail the glass transit temperature (Tg) for the polymer. Multi-layer C-MEMS carbon structures are formed from multiple layers of negative photoresist, wherein a first layer forms carbon interconnects and the second and successive layers form high aspect ratio carbon structures. High-conductivity interconnect traces to connect C-MEMS carbon structures are formed by depositing a metal layer on a substrate, patterning a polymer precursor on top of the metal layer and pyrolyzing the polymer to create the final structure. The interconnects of a device with high aspect ratio electrodes are insulated using a self aligning insulation method.
    • 提供了具有高纵横比碳结构的C-MEMS架构和用于生产高纵横比C-MEMS结构的改进的系统和方法。 具体地说,通过热解图案化的碳前体聚合物,高纵横比的碳结构被微制成。 热解聚合物优选包括在高温气氛中的惰性和形成气体的气氛中的多步骤过程,以达到聚合物的玻璃化转变温度(Tg)。 多层C-MEMS碳结构由多层负性光致抗蚀剂形成,其中第一层形成碳互连,第二层和连续层形成高纵横比碳结构。 用于连接C-MEMS碳结构的高导电性互连迹线通过在衬底上沉积金属层,在金属层的顶部上构图聚合物前体并热解聚合物以形成最终结构而形成。 具有高纵横比电极的器件的互连使用自对准绝缘方法绝缘。
    • 3. 发明授权
    • Surface and composition enhancements to high aspect ratio C-MEMS
    • 高纵横比C-MEMS的表面和组成增强
    • US07534470B2
    • 2009-05-19
    • US11090918
    • 2005-03-25
    • Marc J. MadouChunlei WangLili TaherabadiBenjamin ParkRabih Zaouk
    • Marc J. MadouChunlei WangLili TaherabadiBenjamin ParkRabih Zaouk
    • C23C6/00
    • B81C1/00547B81C1/00111B82Y30/00C23C16/04C23C16/26Y10S977/844Y10S977/947
    • C-MEMS architecture having carbon structures with high surface areas due to high aspect ratios and nanoscale surface enhancements, and improved systems and methods for producing such structures are provided. Specifically, high aspect ratio carbon structures are microfabricated by pyrolyzing a patterned carbon precursor polymer. Pyrolysing the polymer preferably comprises a multi-step process in an atmosphere of inert and forming gas at high temperatures that trail the glass transition temperature (Tg) for the polymer. The surface area of the carbon microstructures is increases by nanotexturing the surface through oxygen plasma exposure, and by integrating nanoscale structures with the carbon microstructures by exposing the carbon microstructures and a catalyst to hydrocarbon gas. In a preferred embodiment, the carbon microstructures are the source of carbon gas.
    • 提供了由于高纵横比和纳米级表面增强而具有高表面积的碳结构的C-MEMS架构,以及用于生产这种结构的改进的系统和方法。 具体地说,通过热解图案化的碳前体聚合物,高纵横比的碳结构被微制成。 热解聚合物优选在惰性气氛中在高温下形成气体的多步法,该温度跟踪聚合物的玻璃化转变温度(Tg)。 碳微观结构的表面积通过使氧等离子体暴露的纳米表面增加,并且通过将碳微结构和催化剂暴露于烃气体中而将纳米尺度结构与碳微结构相结合而增加。 在优选的实施方案中,碳微结构是碳气体的来源。
    • 6. 发明申请
    • METHOD AND APPARATUS FOR DIELECTROPHORETIC SEPARATION
    • 用于电介质分离的方法和装置
    • US20060260944A1
    • 2006-11-23
    • US11419144
    • 2006-05-18
    • Marc MadouBenjamin ParkAlan Paradiso
    • Marc MadouBenjamin ParkAlan Paradiso
    • B03C5/02
    • B03C5/005B03C5/026
    • A dielectrophoretic separation device includes a chamber including an inlet and an outlet disposed between the inlet and the outlet. A plurality of three dimensional electrodes are disposed in within the chamber. The electrodes may take the form of a wire or semi-cylindrical conductors disposed on a substrate. At least some of the electrodes include smooth surfaces so as to create an electric field (in response to an applied alternating current) that has a low strength in a region disposed away from the electrodes and an electric field having a high fields strength in a region between adjacent electrodes. Particulate matter or other species experiencing a positive DEP force may be separated and collected in the gaps or regions formed between adjacent electrodes.
    • 介电电泳分离装置包括一个室,该室包括设置在入口和出口之间的入口和出口。 多个三维电极设置在腔室内。 电极可以采取布置在基板上的线或半圆柱形导体的形式。 至少一些电极包括光滑的表面,以便在远离电极的区域中产生具有低强度的电场(响应于所施加的交流电),并且在区域中具有高场强的电场 在相邻电极之间。 经历正DEP力的颗粒物质或其他物质可以分离并收集在相邻电极之间形成的间隙或区域中。
    • 7. 发明申请
    • MINIATURE FUEL CELLS COMPRISED OF MINIATURE CARBON FLUIDIC PLATES
    • 微型燃料电池包含微型碳氢化合物板
    • US20070207369A1
    • 2007-09-06
    • US11678503
    • 2007-02-23
    • Benjamin ParkMarc Madou
    • Benjamin ParkMarc Madou
    • H01M8/02H01M2/08H01M4/94
    • H01M8/0234H01M8/0239H01M8/0258H01M8/0263H01M8/0271H01M8/0276H01M8/028H01M8/0297H01M2250/30Y02B90/18Y10T29/4911
    • An improved miniature fuel cell comprising fluidic plates having fluidic channel walls and a separator formed from high-temperature polymers. The fluid plates are heated at temperatures sufficient to convert the plates to conductive carbon structures. In one embodiment, the fluidic channel walls and separator are formed separately and bonded together with binder material that converts to conductive carbon during the heat treatment process and acts as a physical and electrical binder. The conductive carbon fluidic plates are assembled with a membrane, electrodes, catalyst support and gas diffusion layers, and gas inlets and outlets to form a fuel cell structure. The fuel cell structure is preferably sealed with an epoxy. The membrane is preferably formed from a hygroscopic material and is sized larger than the fluidic plates such that a portion of the membrane remains exposed to the environment exterior to the assembled fuel cell.
    • 一种改进的微型燃料电池,包括具有流体通道壁的流体板和由高温聚合物形成的隔板。 流体板在足以将板转化为导电碳结构的温度下加热。 在一个实施例中,流体通道壁和分离器分别形成并且在热处理过程中与粘合剂材料结合在一起,其转化为导电碳并用作物理和电动粘合剂。 导电碳流体板与膜,电极,催化剂载体和气体扩散层以及气体入口和出口组装以形成燃料电池结构。 燃料电池结构优选用环氧树脂密封。 膜优选由吸湿材料形成,并且其尺寸大于流体板,使得膜的一部分保持暴露于组装的燃料电池外部的环境。