会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Magnetoresistive sensor employing an exchange-bias enhancing layer with
a variable-composition transition region
    • 采用具有可变成分过渡区域的交换偏置增强层的磁阻传感器
    • US5668687A
    • 1997-09-16
    • US593654
    • 1996-01-29
    • Mao-Min ChenKenneth Ting-Yuan KungChing Hwa Tsang
    • Mao-Min ChenKenneth Ting-Yuan KungChing Hwa Tsang
    • G11B5/39H01F10/32
    • B82Y25/00G11B5/3903G11B5/399H01F10/3218
    • An exchange-biased magnetoresistive (MR) read transducer in which the MR layer composition is changed at the interface with an antiferromagnetic layer, which is in direct contact with the ferromagnetic MR layer. The exchange-bias field strength H.sub.UA in the MR layer is increased at room temperature by adding a specially-optimized transition region in the ferromagnetic MR layer at the interface. The percentage of iron in the ferromagnetic alloy varies from a higher value at the interface to a lower value at the opposite end of the transition region. The higher iron ratio at the antiferromagnetic interface enhances the exchange-bias field H.sub.UA and the lower iron ratio throughout the bulk of the ferromagnetic MR layer maintains the lower coercivity preferred in the layer, thereby enhancing the longitudinal bias field with respect to the MR coercivity. Advantageously, the enhanced longitudinal bias effect of the special ferromagnetic transition region does not reduce the critical temperature T.sub.cr at which the temperature-dependent exchange-bias field H.sub.UA (T) approaches zero.
    • 交换偏置磁阻(MR)读取传感器,其中MR层组成在与铁磁MR层直接接触的反铁磁层的界面处改变。 MR层中的交换偏置场强HUA在室温下通过在界面处的铁磁性MR层中加入特别优化的过渡区而增加。 铁磁合金中铁的百分比从界面处的较高值到过渡区域相对端的较低值变化。 反铁磁性界面处铁含量越高,交换偏置场HUA越大,铁磁MR层整体的铁含量越低,维持层中优选的矫顽力越低,从而增强纵向偏磁场相对于MR矫顽力。 有利的是,特殊铁磁过渡区的增强的纵向偏置效应不会降低温度相关的交换偏置场HUA(T)接近零的临界温度Tcr。
    • 3. 发明授权
    • Magnetoresistive sensor employing an exchange-bias enhancing layer
    • 使用交换偏置增强层的磁阻传感器
    • US5668523A
    • 1997-09-16
    • US449605
    • 1995-05-23
    • Mao-Min ChenKenneth Ting-Yuan KungChing Hwa Tsang
    • Mao-Min ChenKenneth Ting-Yuan KungChing Hwa Tsang
    • G11B5/39H01F10/32
    • B82Y25/00G11B5/3903G11B5/399H01F10/3218
    • An exchange-biased magnetoresistive (MR) read transducer in which the MR layer composition is changed at the interface with an antiferromagnetic layer, which is in direct contact with the ferromagnetic MR layer. The exchange-bias field strength H.sub.UA in the MR layer is increased at room temperature by adding a specially-optimized transition region in the ferromagnetic MR layer at the interface. The percentage of iron in the ferromagnetic alloy varies from a higher value at the interface to a lower value at the opposite end of the transition region. The higher iron ratio at the antiferromagnetic interface enhances the exchange-bias field H.sub.UA and the lower iron ratio throughout the bulk of the ferromagnetic MR layer maintains the lower coercivity preferred in the layer, thereby enhancing the longitudinal bias field with respect to the MR coercivity. Advantageously, the enhanced longitudinal bias effect of the special ferromagnetic transition region does not reduce the critical temperature T.sub.cr at which the temperature-dependent exchange-bias field H.sub.UA (T) approaches zero.
    • 交换偏置磁阻(MR)读取传感器,其中MR层组成在与铁磁MR层直接接触的反铁磁层的界面处改变。 MR层中的交换偏置场强HUA在室温下通过在界面处的铁磁性MR层中加入特别优化的过渡区而增加。 铁磁合金中铁的百分比从界面处的较高值到过渡区域相对端的较低值变化。 反铁磁性界面处铁含量越高,交换偏置场HUA越大,铁磁MR层整体的铁含量越低,维持层中优选的矫顽力越低,从而增强纵向偏磁场相对于MR矫顽力。 有利的是,特殊铁磁过渡区的增强的纵向偏置效应不会降低温度相关的交换偏置场HUA(T)接近零的临界温度Tcr。
    • 4. 发明授权
    • Edge-biased magnetoresistive sensor
    • 边缘偏置磁阻传感器
    • US5680281A
    • 1997-10-21
    • US482898
    • 1995-06-07
    • Kenneth Ting-Yuan KungPo-Kang Wang
    • Kenneth Ting-Yuan KungPo-Kang Wang
    • G01R33/09G11B5/127G11B5/39H01F10/00G11B5/33
    • B82Y25/00G01R33/093G01R33/096G11B5/3903G11B5/399
    • A magnetoresistive (MR) sensor comprising a layer of ferromagnetic material forming an MR sensing element wherein the MR sensor is biased by utilizing only the MR stripe uniaxial anisotropy and the shape anisotropy of the active region of the sensing element. The active region of the MR element has a generally square geometry to provide the desired shape anisotropy. The MR sensor is biased at approximately 45 degrees by defining the magnetization at the four edges of the sense element active region utilizing its shape anisotropy and canting the magnetic easy axis at an appropriate angle during fabrication of the MR sensor. To minimize Barkhausen noise, a single magnetic domain configuration is achieved by reducing the sensor active region dimensions, i.e., stripe height and track width, to less than the characteristic domain wall thickness such that the formation of multiple magnetic domains is no longer energetically favorable. A magnetic biasing material such as a layer of antiferromagnetic material to provide exchange coupling, can be provided at a pair of opposing edges to maintain the magnetization at the edges in the desired orientation and to stabilize the sensor.
    • 磁阻(MR)传感器包括形成MR感测元件的铁磁材料层,其中通过仅利用感测元件的有源区域的MR条状单轴各向异性和形状各向异性来偏置MR传感器。 MR元件的有源区具有大致正方形的几何形状以提供期望的形状各向异性。 通过在感测元件有源区域的四个边缘处利用其形状各向异性限定磁化强度,将MR传感器偏置在大约45度,并且在MR传感器的制造过程中将磁性容易轴倾斜到适当的角度。 为了最小化巴克豪森噪声,通过将传感器有源区域尺寸(即条带高度和轨道宽度)减小到小于特征域壁厚度来实现单个磁畴构造,使得多个磁畴的形成不再在能量方面有利。 可以在一对相对边缘处提供诸如反铁磁材料层的磁偏置材料,以提供交换耦合,以保持在期望取向的边缘处的磁化并使传感器稳定。