会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 9. 发明申请
    • SPOOFED FACE DETECTION
    • SPOOFED脸部检测
    • WO2017070920A1
    • 2017-05-04
    • PCT/CN2015/093334
    • 2015-10-30
    • MICROSOFT TECHNOLOGY LICENSING, LLCLI, JinyuWEN, FangWEI, YichenCONRAD, Michael JohnCHU, Chun-TeJAWAID, Aamir
    • LI, JinyuWEN, FangWEI, YichenCONRAD, Michael JohnCHU, Chun-TeJAWAID, Aamir
    • G06K9/00
    • G06K9/00899G06K9/4652G06K9/6269
    • Examples are disclosed herein that relate to detecting spoofed human faces. One example provides a computing device comprising a processor configured to compute a first feature distance between registered image data of a human face in a first spectral region and test image data of the human face in the first spectral region, compute a second feature distance between the registered image data and test image data of the human face in a second spectral region, compute a test feature distance between the test image data in the first spectral region and the test image data in the second spectral region, determine, based on a predetermined relationship, whether the human face to which the test image data in the first and second spectral regions corresponds is a real human face or a spoofed human face, and modify a behavior of the computing device.
    • 这里公开了与检测伪造的人脸有关的示例。 一个示例提供了一种计算设备,该计算设备包括处理器,该处理器被配置为计算第一光谱区域中的人脸的登记图像数据与第一光谱区域中的人脸的测试图像数据之间的第一特征距离,计算第二特征距离 在第二光谱区域中记录人脸的登记图像数据和测试图像数据,计算第一光谱区域中的测试图像数据和第二光谱区域中的测试图像数据之间的测试特征距离,基于预定关系 ,第一和第二光谱区域中的测试图像数据所对应的人脸是否是真人脸或欺骗人脸,并且修改计算设备的行为。
    • 10. 发明申请
    • LOW-FOOTPRINT ADAPTATION AND PERSONALIZATION FOR A DEEP NEURAL NETWORK
    • 用于深层神经网络的低自适应和个性化
    • WO2015134294A1
    • 2015-09-11
    • PCT/US2015/017872
    • 2015-02-27
    • MICROSOFT TECHNOLOGY LICENSING, LLC
    • XUE, JianLI, JinyuYU, DongSELTZER, Michael L.GONG, Yifan
    • G10L15/07G10L15/16
    • G10L15/16G06N3/082G10L15/075
    • The adaptation and personalization of a deep neural network (DNN) model for automatic speech recognition is provided. An utterance which includes speech features for one or more speakers may be received in ASR tasks such as voice search or short message dictation. A decomposition approach may then be applied to an original matrix in the DNN model. In response to applying the decomposition approach, the original matrix may be converted into multiple new matrices which are smaller than the original matrix. A square matrix may then be added to the new matrices. Speaker-specific parameters may then be stored in the square matrix. The DNN model may then be adapted by updating the square matrix. This process may be applied to all of a number of original matrices in the DNN model. The adapted DNN model may include a reduced number of parameters than those received in the original DNN model.
    • 提供了一种用于自动语音识别的深层神经网络(DNN)模型的适应和个性化。 可以在诸如语音搜索或短消息听写的ASR任务中接收包括用于一个或多个扬声器的语音特征的话语。 然后可以将分解方法应用于DNN模型中的原始矩阵。 响应于应用分解方法,原始矩阵可以被转换成小于原始矩阵的多个新矩阵。 然后可以将正方形矩阵添加到新矩阵。 然后可以将扬声器特定参数存储在方阵中。 然后可以通过更新方阵来适应DNN模型。 该过程可以应用于DNN模型中的所有原始矩阵。 适应的DNN模型可以包括与原始DNN模型中接收的参数相比减少的参数数量。