会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明申请
    • SPOOFED FACE DETECTION
    • SPOOFED脸部检测
    • WO2017070920A1
    • 2017-05-04
    • PCT/CN2015/093334
    • 2015-10-30
    • MICROSOFT TECHNOLOGY LICENSING, LLCLI, JinyuWEN, FangWEI, YichenCONRAD, Michael JohnCHU, Chun-TeJAWAID, Aamir
    • LI, JinyuWEN, FangWEI, YichenCONRAD, Michael JohnCHU, Chun-TeJAWAID, Aamir
    • G06K9/00
    • G06K9/00899G06K9/4652G06K9/6269
    • Examples are disclosed herein that relate to detecting spoofed human faces. One example provides a computing device comprising a processor configured to compute a first feature distance between registered image data of a human face in a first spectral region and test image data of the human face in the first spectral region, compute a second feature distance between the registered image data and test image data of the human face in a second spectral region, compute a test feature distance between the test image data in the first spectral region and the test image data in the second spectral region, determine, based on a predetermined relationship, whether the human face to which the test image data in the first and second spectral regions corresponds is a real human face or a spoofed human face, and modify a behavior of the computing device.
    • 这里公开了与检测伪造的人脸有关的示例。 一个示例提供了一种计算设备,该计算设备包括处理器,该处理器被配置为计算第一光谱区域中的人脸的登记图像数据与第一光谱区域中的人脸的测试图像数据之间的第一特征距离,计算第二特征距离 在第二光谱区域中记录人脸的登记图像数据和测试图像数据,计算第一光谱区域中的测试图像数据和第二光谱区域中的测试图像数据之间的测试特征距离,基于预定关系 ,第一和第二光谱区域中的测试图像数据所对应的人脸是否是真人脸或欺骗人脸,并且修改计算设备的行为。
    • 6. 发明申请
    • LEARNING STUDENT DNN VIA OUTPUT DISTRIBUTION
    • 学习DNN通过输出分配
    • WO2016037350A1
    • 2016-03-17
    • PCT/CN2014/086397
    • 2014-09-12
    • MICROSOFT CORPORATIONZHAO, RuiHUANG, Jui-TingLI, JinyuGONG, Yifan
    • ZHAO, RuiHUANG, Jui-TingLI, JinyuGONG, Yifan
    • G06K9/66
    • G06N3/084G06N3/0454G06N7/005G06N99/005G09B5/00
    • Systems and methods are provided for generating a DNN classifier by "learning" a "student" DNN model from a larger, more accurate "teacher" DNN model. The student DNN may be trained from unlabeled training data by passing the unlabeled training data through the teacher DNN, which may be trained from labeled data. In one embodiment, an iterative processis applied to train the student DNN by minimizing the divergence of the output distributions from the teacher and student DNN models. For each iteration until convergence, the difference in the outputs of these two DNNsis used to update the student DNN model, and outputs are determined again, using the unlabeled training data. The resulting trained student DNN model may be suitable for providing accurate signal processing applications on devices having limited computational or storage resources such as mobile or wearable devices. In an embodiment, the teacher DNN model comprises an ensemble of DNN models.
    • 提供了通过从更大,更准确的“教师”DNN模型学习“学生”DNN模型来生成DNN分类器的系统和方法。 通过传递未标记的训练数据通过教师DNN,可以从未标记的训练数据训练学生DNN,该DNN可以从标记数据中训练。 在一个实施例中,迭代过程被应用于通过最小化来自教师和学生DNN模型的输出分布的差异来训练学生DNN。 对于每次迭代直到收敛,这两个DNNsis的输出的差异用于更新学生DNN模型,并且使用未标记的训练数据再次确定输出。 所得到的训练有素的学生DNN模型可能适合于在具有有限计算或存储资源的设备(例如移动或可穿戴设备)上提供精确的信号处理应用。 在一个实施例中,教师DNN模型包括DNN模型的集合。