会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Content object indexing using domain knowledge
    • 使用领域知识的内容对象索引
    • US07698294B2
    • 2010-04-13
    • US11275509
    • 2006-01-11
    • Wei-Ying MaLie LuJi-Rong WenZhiwei LiZaiqing NieHsiao-Wuen Hon
    • Wei-Ying MaLie LuJi-Rong WenZhiwei LiZaiqing NieHsiao-Wuen Hon
    • G06F17/30
    • G06F17/30613
    • A content object indexing process including creating a content object knowledge index, calculating a description vector of a target content object, and indexing the target content object by searching for the description vector in the content object knowledge database. It may be difficult to search for an exact content object such as a music file or academic researcher as a conventional search index may not include related hierarchical information. A content object indexing process may add hierarchical information taken from a content object knowledge index and incorporate the hierarchical information to the index entry for a specific content object. An application of such a content object indexing process may be a world wide web search engine.
    • 内容对象索引处理包括创建内容对象知识索引,计算目标内容对象的描述向量,并通过搜索内容对象知识库中的描述向量来索引目标内容对象。 可能难以搜索诸如音乐文件或学术研究者的确切内容对象,因为传统的搜索索引可能不包括相关的分层信息。 内容对象索引处理可以添加从内容对象知识索引获取的分层信息,并且将分层信息并入特定内容对象的索引条目。 这样的内容对象索引处理的应用可以是万维网搜索引擎。
    • 2. 发明申请
    • Content Object Indexing Using Domain Knowledge
    • 使用域知识的内容对象索引
    • US20070162408A1
    • 2007-07-12
    • US11275509
    • 2006-01-11
    • Wei-Ying MaLie LuJi-Rong WenZhiwei LiZaiqing NieHsiao-Wuen Hon
    • Wei-Ying MaLie LuJi-Rong WenZhiwei LiZaiqing NieHsiao-Wuen Hon
    • G06N5/02
    • G06F17/30613
    • A content object indexing process including creating a content object knowledge index, calculating a description vector of a target content object, and indexing the target content object by searching for the description vector in the content object knowledge database. It may be difficult to search for an exact content object such as a music file or academic researcher as a conventional search index may not include related hierarchical information. A content object indexing process may add hierarchical information taken from a content object knowledge index and incorporate the hierarchical information to the index entry for a specific content object. An application of such a content object indexing process may be a world wide web search engine.
    • 内容对象索引处理包括创建内容对象知识索引,计算目标内容对象的描述向量,并通过搜索内容对象知识库中的描述向量来索引目标内容对象。 可能难以搜索诸如音乐文件或学术研究者的确切内容对象,因为传统的搜索索引可能不包括相关的分层信息。 内容对象索引处理可以添加从内容对象知识索引获取的分层信息,并且将分层信息并入特定内容对象的索引条目。 这样的内容对象索引处理的应用可以是万维网搜索引擎。
    • 3. 发明申请
    • Automated rich presentation of a semantic topic
    • 自动丰富的语义主题演示
    • US20070094251A1
    • 2007-04-26
    • US11256411
    • 2005-10-21
    • Lie LuWei-Ying MaZhiwei Li
    • Lie LuWei-Ying MaZhiwei Li
    • G06F17/30
    • G06F17/30705G06F17/30056
    • Automated rich presentation of a semantic topic is described. In one aspect, respective portions of multimodal information corresponding to a semantic topic are evaluated to locate events associated with the semantic topic. The probability that a document belongs to an event is determined based on document inclusion of one or more of persons, times, locations, and keywords, and document distribution along a timeline associated with the event. For each event, one or more documents objectively determined to be substantially representative of the event are identified. One or more other types of media (e.g., video, images, etc.) related to the event are then extracted from the multimodal information. The representative documents and the other media are for presentation to a user in a storyboard.
    • 描述了语义主题的自动丰富呈现。 在一个方面,评估与语义主题相对应的多模态信息的相应部分,以定位与语义主题相关联的事件。 基于文档包含一个或多个人,时间,位置和关键字以及与事件相关联的时间轴的文档分发来确定文档属于事件的概率。 对于每个事件,识别客观地确定为基本上代表事件的一个或多个文档。 然后从多模态信息中提取与事件相关的一个或多个其他类型的媒体(例如,视频,图像等)。 代表性文件和其他媒体用于向故事板中的用户呈现。
    • 4. 发明授权
    • Automated rich presentation of a semantic topic
    • 自动丰富的语义主题演示
    • US08572088B2
    • 2013-10-29
    • US11256411
    • 2005-10-21
    • Lie LuWei-Ying MaZhiwei Li
    • Lie LuWei-Ying MaZhiwei Li
    • G06F7/00G06F17/30
    • G06F17/30705G06F17/30056
    • Automated rich presentation of a semantic topic is described. In one aspect, respective portions of multimodal information corresponding to a semantic topic are evaluated to locate events associated with the semantic topic. The probability that a document belongs to an event is determined based on document inclusion of one or more of persons, times, locations, and keywords, and document distribution along a timeline associated with the event. For each event, one or more documents objectively determined to be substantially representative of the event are identified. One or more other types of media (e.g., video, images, etc.) related to the event are then extracted from the multimodal information. The representative documents and the other media are for presentation to a user in a storyboard.
    • 描述了语义主题的自动丰富呈现。 在一个方面,评估与语义主题相对应的多模态信息的相应部分,以定位与语义主题相关联的事件。 基于文档包含一个或多个人,时间,位置和关键字以及与事件相关联的时间轴的文档分发来确定文档属于事件的概率。 对于每个事件,识别客观地确定为基本上代表事件的一个或多个文档。 然后从多模态信息中提取与事件相关的一个或多个其他类型的媒体(例如,视频,图像等)。 代表性文件和其他媒体用于向故事板中的用户呈现。
    • 6. 发明授权
    • Propagating relevance from labeled documents to unlabeled documents
    • 从标签文档到未标记的文档传播相关性
    • US08019763B2
    • 2011-09-13
    • US11364807
    • 2006-02-27
    • Jue WangMingjing LiWei-Ying MaZhiwei Li
    • Jue WangMingjing LiWei-Ying MaZhiwei Li
    • G07F17/30G07F7/00
    • G06F17/30864
    • A method and system for propagating the relevance of labeled documents to a query to unlabeled documents is provided. The propagation system provides training data that includes queries, documents labeled with their relevance to the queries, and unlabeled documents. The propagation system then calculates the similarity between pairs of documents in the training data. The propagation system then propagates the relevance of the labeled documents to similar, but unlabeled, documents. The propagation system may iteratively propagate labels of the documents until the labels converge on a solution. The training data with the propagated relevances can then be used to train a ranking function.
    • 提供了一种用于将标记的文档的相关性传播到未标记文档的查询的方法和系统。 传播系统提供包括查询,标记为与查询相关的文档以及未标记的文档的培训数据。 传播系统然后计算训练数据中文档对之间的相似度。 传播系统然后将标记的文档的相关性传播到类似但未标记的文档。 传播系统可以迭代地传播文档的标签,直到标签收敛在解决方案上。 然后可以使用具有传播相关性的训练数据来训练排序功能。
    • 7. 发明授权
    • Extracting dominant colors from images using classification techniques
    • 使用分类技术从图像中提取主色
    • US07809185B2
    • 2010-10-05
    • US11533953
    • 2006-09-21
    • Mingjing LiWei-Ying MaZhiwei LiYuanhao Chen
    • Mingjing LiWei-Ying MaZhiwei LiYuanhao Chen
    • G06K9/62
    • G06K9/4652G06T7/90G06T2207/10024G06T2207/20081
    • A method and system for generating a detector to detect a dominant color of an image is provided. A dominant color system trains a detector to classify colors as being dominant colors of images. The dominant color system trains the detector using a collection of training images. To train the detector, the dominant color system first identifies candidate dominant colors of the training images. The dominant color system then extracts features of the candidate dominant colors. The dominant color system also inputs an indication of dominance of each of the candidate dominant colors. The dominant color system then trains a detector to detect the dominant color of images using the extracted features and indications of dominance of the candidate dominant colors as training data.
    • 提供了一种用于生成用于检测图像的主要颜色的检测器的方法和系统。 主色系统训练检测器将颜色分类为图像的主要颜色。 主要颜色系统使用训练图像的集合训练检测器。 为了训练检测器,主要颜色系统首先识别训练图像的候选主色。 主要颜色系统然后提取候选主色的特征。 主要颜色系统还输入每种候选主色的优势指示。 主要颜色系统然后训练检测器以使用提取的特征和候选主色优势的指示作为训练数据来检测图像的主要颜色。
    • 8. 发明授权
    • Detecting duplicate images using hash code grouping
    • 使用哈希码分组检测重复的图像
    • US07647331B2
    • 2010-01-12
    • US11277727
    • 2006-03-28
    • Mingjing LiBin WangWei-Ying MaZhiwei Li
    • Mingjing LiBin WangWei-Ying MaZhiwei Li
    • G06F7/00G06F17/00G06K9/56G06K9/68
    • G06F17/30864
    • A duplicate image detection system generates an image table that maps hash codes of images to their corresponding images. The image table may group images according to their group identifiers generated from the most significant elements of the hash codes based on significance of the elements in representing an image. The image table thus segregates images by their group identifiers. To detect a duplicate image of a target image, the detection system generates a target hash code for the target image. The detection system then identifies the group of the target image based on the group identifier of the target hash code. After identifying the group identifier, the detection system searches the corresponding group table to identify hash codes that have values that are similar to the target hash code. The detection system then selects the images associated with those similar hash codes as being duplicates of the target image.
    • 复制图像检测系统生成将图像的哈希码映射到其对应图像的图像表。 图像表可以根据基于代表图像的元素的重要性从哈希码的最重要元素生成的组标识符来对图像进行分组。 因此,图像表通过其组标识符隔离图像。 为了检测目标图像的重复图像,检测系统生成目标图像的目标散列码。 然后,检测系统基于目标散列码的组标识符来识别目标图像的组。 在识别组标识符之后,检测系统搜索对应的组表以识别具有与目标散列码相似的值的散列码。 然后,检测系统选择与这些类似的哈希码相关联的图像作为目标图像的重复。
    • 9. 发明申请
    • Dual Cross-Media Relevance Model for Image Annotation
    • 图像注释的双重跨媒体相关性模型
    • US20090076800A1
    • 2009-03-19
    • US11956331
    • 2007-12-13
    • Mingjing LiJing LiuBin WangZhiwei LiWei-Ying Ma
    • Mingjing LiJing LiuBin WangZhiwei LiWei-Ying Ma
    • G06F17/21
    • G06F17/241G06F17/2735
    • A dual cross-media relevance model (DCMRM) is used for automatic image annotation. In contrast to the traditional relevance models which calculate the joint probability of words and images over a training image database, the DCMRM model estimates the joint probability by calculating the expectation over words in a predefined lexicon. The DCMRM model may be advantageous because a predefined lexicon potentially has better behavior than a training image database. The DCMRM model also takes advantage of content-based techniques and image search techniques to define the word-to-image and word-to-word relations involved in image annotation. Both relations can be estimated by using image search techniques on the web data as well as available training data.
    • 双重跨媒体相关性模型(DCMRM)用于自动图像注释。 与在训练图像数据库中计算单词和图像的联合概率的传统相关性模型相反,DCMRM模型通过计算预定义词典中的单词的期望来估计联合概率。 DCMRM模型可能是有利的,因为预定义词典潜在地具有比训练图像数据库更好的行为。 DCMRM模型还利用基于内容的技术和图像搜索技术来定义图像注释中涉及的单词到图像和单词对字的关系。 可以通过使用图像搜索技术对网络数据以及可用的训练数据来估计这两个关系。