会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Estimating word correlations from images
    • 从图像估计字相关性
    • US08457416B2
    • 2013-06-04
    • US11956333
    • 2007-12-13
    • Jing LiuBin WangZhiwei LiMingjing LiWei-Ying Ma
    • Jing LiuBin WangZhiwei LiMingjing LiWei-Ying Ma
    • G06K9/72
    • G06F17/30247G06F17/30731
    • Word correlations are estimated using a content-based method, which uses visual features of image representations of the words. The image representations of the subject words may be generated by retrieving images from data sources (such as the Internet) using image search with the subject words as query words. One aspect of the techniques is based on calculating the visual distance or visual similarity between the sets of retrieved images corresponding to each query word. The other is based on calculating the visual consistence among the set of the retrieved images corresponding to a conjunctive query word. The combination of the content-based method and a text-based method may produce even better result.
    • 使用基于内容的方法来估计词相关性,其使用词的图像表示的视觉特征。 可以通过使用将主题词作为查询词的图像搜索从数据源(例如因特网)检索图像来生成主题词的图像表示。 该技术的一个方面是基于计算对应于每个查询词的检索图像组之间的视觉距离或视觉相似度。 另一个是基于计算与连接查询词对应的检索到的图像的集合之间的视觉一致性。 基于内容的方法和基于文本的方法的组合可以产生更好的结果。
    • 4. 发明申请
    • CLASSIFICATION OF IMAGES AS ADVERTISEMENT IMAGES OR NON-ADVERTISEMENT IMAGES
    • 图像分类作为广告图像或非广告图像
    • US20110058734A1
    • 2011-03-10
    • US12945635
    • 2010-11-12
    • Mingjing LiZhiwei LiDongfang LiBin Wang
    • Mingjing LiZhiwei LiDongfang LiBin Wang
    • G06K9/62
    • G06Q30/02G06Q30/0277
    • An advertisement image classification system trains a binary classifier to classify images as advertisement images or non-advertisement images and then uses the binary classifier to classify images of web pages as advertisement images or non-advertisement images. During a training phase, the classification system generates training data of feature vectors representing the images and labels indicating whether an image is an advertisement image or a non-advertisement Image. The classification system trains a binary classifier to classify Images using training data. During a classification phase, the classification system inputs a web page with an image and generates a feature vector for the image. The classification system then applies the trained binary classifier to the feature vector to generate a score indicating whether the image is an advertisement image or a non-advertisement image.
    • 广告图像分类系统训练二进制分类器将图像分类为广告图像或非广告图像,然后使用二进制分类器将网页的图像分类为广告图像或非广告图像。 在训练阶段,分类系统生成表示图像的特征向量的训练数据,以及指示图像是广告图像还是非广告图像的标签。 分类系统训练二进制分类器,以使用训练数据对图像进行分类。 在分类阶段,分类系统输入具有图像的网页,并生成图像的特征向量。 然后,分类系统将经过训练的二进制分类器应用于特征向量,以生成指示图像是广告图像还是非广告图像的分数。
    • 5. 发明授权
    • Head pose assessment methods and systems
    • 头姿势评估方法和系统
    • US07844086B2
    • 2010-11-30
    • US12143717
    • 2008-06-20
    • Yuxiao HuLei ZhangMingjing LiHong-Jiang Zhang
    • Yuxiao HuLei ZhangMingjing LiHong-Jiang Zhang
    • G06K9/00
    • G06F3/012G06K9/00268G06K9/6211G06T7/73G06T2207/30201
    • Improvements are provided to effectively assess a user's face and head pose such that a computer or like device can track the user's attention towards a display device(s). Then the region of the display or graphical user interface that the user is turned towards can be automatically selected without requiring the user to provide further inputs. A frontal face detector is applied to detect the user's frontal face and then key facial points such as left/right eye center, left/right mouth corner, nose tip, etc., are detected by component detectors. The system then tracks the user's head by an image tracker and determines yaw, tilt and roll angle and other pose information of the user's head through a coarse to fine process according to key facial points and/or confidence outputs by pose estimator.
    • 提供了改进以有效地评估用户的脸部和头部姿势,使得计算机或类似装置可以跟踪用户对显示装置的注意。 然后可以自动选择用户转向的显示或图形用户界面的区域,而不需要用户提供进一步的输入。 应用前置面部检测器来检测使用者的正面,然后通过部件检测器检测左右眼中心,左/右口角,鼻尖等的关键面部点。 然后,系统通过图像跟踪器跟踪用户的头部,并且通过姿态估计器根据关键面部点和/或置信输出,通过粗略到精细处理确定用户头部的偏航,倾斜和滚动角度和其他姿态信息。
    • 6. 发明授权
    • Robust multi-view face detection methods and apparatuses
    • 强大的多视角人脸检测方法和装置
    • US07689033B2
    • 2010-03-30
    • US10621260
    • 2003-07-16
    • Rong XiaoLong ZhuLei ZhangMingjing LiHong-Jiang Zhang
    • Rong XiaoLong ZhuLei ZhangMingjing LiHong-Jiang Zhang
    • G06K9/00G06K9/62G06K9/46G06K9/40
    • G06K9/4614G06K9/00228
    • Face detection techniques are provided that use a multiple-stage face detection algorithm. An exemplary three-stage algorithm includes a first stage that applies linear-filtering to enhance detection performance by removing many non-face-like portions within an image, a second stage that uses a boosting chain that is adopted to combine boosting classifiers within a hierarchy “chain” structure, and a third stage that performs post-filtering using image pre-processing, SVM-filtering and color-filtering to refine the final face detection prediction. In certain further implementations, the face detection techniques include a two-level hierarchy in-plane pose estimator to provide a rapid multi-view face detector that further improves the accuracy and robustness of face detection.
    • 提供了使用多级面部检测算法的人脸检测技术。 示例性的三阶段算法包括第一阶段,其通过去除图像内的许多非面部部分来应用线性滤波以增强检测性能;第二阶段,其使用用于组合层级内的增强分类器的升压链 “链”结构,以及使用图像预处理,SVM滤波和颜色滤波来完成最终面部检测预测来执行后置滤波的第三阶段。 在某些进一步的实施方式中,面部检测技术包括两层次平面姿态估计器,以提供进一步提高面部检测的准确性和鲁棒性的快速多视角面部检测器。
    • 7. 发明申请
    • Estimating Word Correlations from Images
    • 估计图像中的词相关性
    • US20090074306A1
    • 2009-03-19
    • US11956333
    • 2007-12-13
    • Jing LiuBin WangZhiwei LiMingjing LiWei-Ying Ma
    • Jing LiuBin WangZhiwei LiMingjing LiWei-Ying Ma
    • G06K9/72
    • G06F17/30247G06F17/30731
    • Word correlations are estimated using a content-based method, which uses visual features of image representations of the words. The image representations of the subject words may be generated by retrieving images from data sources (such as the Internet) using image search with the subject words as query words. One aspect of the techniques is based on calculating the visual distance or visual similarity between the sets of retrieved images corresponding to each query word. The other is based on calculating the visual consistence among the set of the retrieved images corresponding to a conjunctive query word. The combination of the content-based method and a text-based method may produce even better result.
    • 使用基于内容的方法来估计词相关性,其使用词的图像表示的视觉特征。 可以通过使用将主题词作为查询词的图像搜索从数据源(例如因特网)检索图像来生成主题词的图像表示。 该技术的一个方面是基于计算对应于每个查询词的检索图像组之间的视觉距离或视觉相似度。 另一个是基于计算与连接查询词对应的检索到的图像的集合之间的视觉一致性。 基于内容的方法和基于文本的方法的组合可以产生更好的结果。
    • 8. 发明申请
    • Head Pose Assessment Methods and Systems
    • 头姿评估方法与系统
    • US20080298637A1
    • 2008-12-04
    • US12143717
    • 2008-06-20
    • Yuxiao HuLei ZhangMingjing LiHong-Jiang Zhang
    • Yuxiao HuLei ZhangMingjing LiHong-Jiang Zhang
    • G06K9/00
    • G06F3/012G06K9/00268G06K9/6211G06T7/73G06T2207/30201
    • Improvements are provided to effectively assess a user's face and head pose such that a computer or like device can track the user's attention towards a display device(s). Then the region of the display or graphical user interface that the user is turned towards can be automatically selected without requiring the user to provide further inputs. A frontal face detector is applied to detect the user's frontal face and then key facial points such as left/right eye center, left/right mouth corner, nose tip, etc., are detected by component detectors. The system then tracks the user's head by an image tracker and determines yaw, tilt and roll angle and other pose information of the user's head through a coarse to fine process according to key facial points and/or confidence outputs by pose estimator.
    • 提供了改进以有效地评估用户的脸部和头部姿势,使得计算机或类似装置可以跟踪用户对显示装置的注意。 然后可以自动选择用户转向的显示或图形用户界面的区域,而不需要用户提供进一步的输入。 应用前置面部检测器来检测使用者的正面,然后通过部件检测器检测左右眼中心,左/右口角,鼻尖等的关键面部点。 然后,系统通过图像跟踪器跟踪用户的头部,并且通过姿态估计器根据关键面部点和/或置信输出,通过粗略到精细处理确定用户头部的偏航,倾斜和滚动角度和其他姿态信息。