会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 4. 发明授权
    • Nanotubular toughening inclusions
    • 纳米管增韧夹杂物
    • US09074066B2
    • 2015-07-07
    • US13032045
    • 2011-02-22
    • Cheol ParkDennis C. WorkingEmilie J. SiochiJoycelyn S. Harrison
    • Cheol ParkDennis C. WorkingEmilie J. SiochiJoycelyn S. Harrison
    • C08L89/00C08L79/08C08G73/10C08K3/04B82Y30/00C08K7/24
    • C08K7/24B82Y30/00C08K2201/011
    • Conventional toughening agents are typically rubbery materials or small molecular weight molecules, which mostly sacrifice the intrinsic properties of a matrix such as modulus, strength, and thermal stability as side effects. On the other hand, high modulus inclusions tend to reinforce elastic modulus very efficiently, but not the strength very well. For example, mechanical reinforcement with inorganic inclusions often degrades the composite toughness, encountering a frequent catastrophic brittle failure triggered by minute chips and cracks. Thus, toughening generally conflicts with mechanical reinforcement. Carbon nanotubes have been used as efficient reinforcing agents in various applications due to their combination of extraordinary mechanical, electrical, and thermal properties. Moreover, nanotubes can elongate more than 20% without yielding or breaking, and absorb significant amounts of energy during deformation, which enables them to also be an efficient toughening agent, as well as excellent reinforcing inclusion. Accordingly, an improved toughening method is provided by incorporating nanotubular inclusions into a host matrix, such as thermoset and thermoplastic polymers or ceramics without detrimental effects on the matrix's intrinsic physical properties.
    • 常规增韧剂通常是橡胶状材料或小分子量分子,其主要牺牲基质的固有性质,例如作为副作用的模量,强度和热稳定性。 另一方面,高模量夹杂物倾向于非常有效地增强弹性模量,但是强度非常好。 例如,具有无机夹杂物的机械增强剂常常降低复合材料的韧性,遇到由碎片和裂纹引起的频繁的灾难性脆性破坏。 因此,增韧通常与机械加强冲突。 碳纳米管由于其非凡的机械,电气和热性能的组合,已经在各种应用中用作有效的增强剂。 此外,纳米管可以延伸超过20%而不产生或破裂,并且在变形期间吸收大量的能量,这使得它们也可以是有效的增​​韧剂,以及优异的增强夹杂物。 因此,通过将纳米管状夹杂物结合到主体基质如热固性和热塑性聚合物或陶瓷中而不会对基体的固有物理性质产生不利影响,提供了改进的增韧方法。
    • 5. 发明申请
    • Nanotubular Toughening Inclusions
    • 纳米增韧包裹体
    • US20110192319A1
    • 2011-08-11
    • US13032045
    • 2011-02-22
    • Cheol ParkDennis C. WorkingEmilie J. SiochiJoycelyn S. Harrison
    • Cheol ParkDennis C. WorkingEmilie J. SiochiJoycelyn S. Harrison
    • C08L89/00C08L79/08C08G73/10C08K3/04B82Y30/00
    • C08K7/24B82Y30/00C08K2201/011
    • Conventional toughening agents are typically rubbery materials or small molecular weight molecules, which mostly sacrifice the intrinsic properties of a matrix such as modulus, strength, and thermal stability as side effects. On the other hand, high modulus inclusions tend to reinforce elastic modulus very efficiently, but not the strength very well. For example, mechanical reinforcement with inorganic inclusions often degrades the composite toughness, encountering a frequent catastrophic brittle failure triggered by minute chips and cracks. Thus, toughening generally conflicts with mechanical reinforcement. Carbon nanotubes have been used as efficient reinforcing agents in various applications due to their combination of extraordinary mechanical, electrical, and thermal properties. Moreover, nanotubes can elongate more than 20% without yielding or breaking, and absorb significant amounts of energy during deformation, which enables them to also be an efficient toughening agent, as well as excellent reinforcing inclusion. Accordingly, an improved toughening method is provided by incorporating nanotubular inclusions into a host matrix, such as thermoset and thermoplastic polymers or ceramics without detrimental effects on the matrix's intrinsic physical properties.
    • 常规增韧剂通常是橡胶状材料或小分子量分子,其主要牺牲基质的固有性质,例如作为副作用的模量,强度和热稳定性。 另一方面,高模量夹杂物倾向于非常有效地增强弹性模量,但是强度非常好。 例如,具有无机夹杂物的机械增强剂常常降低复合材料的韧性,遇到由碎片和裂纹引起的频繁的灾难性脆性破坏。 因此,增韧通常与机械加强冲突。 碳纳米管由于其非凡的机械,电气和热性能的组合,已经在各种应用中用作有效的增强剂。 此外,纳米管可以延伸超过20%而不产生或破裂,并且在变形期间吸收大量的能量,这使得它们也可以是有效的增​​韧剂,以及优异的增强夹杂物。 因此,通过将纳米管状夹杂物结合到主体基质如热固性和热塑性聚合物或陶瓷中而不会对基体的固有物理性质产生不利影响,提供了改进的增韧方法。