会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • Nanotubular Toughening Inclusions
    • 纳米增韧包裹体
    • US20110192319A1
    • 2011-08-11
    • US13032045
    • 2011-02-22
    • Cheol ParkDennis C. WorkingEmilie J. SiochiJoycelyn S. Harrison
    • Cheol ParkDennis C. WorkingEmilie J. SiochiJoycelyn S. Harrison
    • C08L89/00C08L79/08C08G73/10C08K3/04B82Y30/00
    • C08K7/24B82Y30/00C08K2201/011
    • Conventional toughening agents are typically rubbery materials or small molecular weight molecules, which mostly sacrifice the intrinsic properties of a matrix such as modulus, strength, and thermal stability as side effects. On the other hand, high modulus inclusions tend to reinforce elastic modulus very efficiently, but not the strength very well. For example, mechanical reinforcement with inorganic inclusions often degrades the composite toughness, encountering a frequent catastrophic brittle failure triggered by minute chips and cracks. Thus, toughening generally conflicts with mechanical reinforcement. Carbon nanotubes have been used as efficient reinforcing agents in various applications due to their combination of extraordinary mechanical, electrical, and thermal properties. Moreover, nanotubes can elongate more than 20% without yielding or breaking, and absorb significant amounts of energy during deformation, which enables them to also be an efficient toughening agent, as well as excellent reinforcing inclusion. Accordingly, an improved toughening method is provided by incorporating nanotubular inclusions into a host matrix, such as thermoset and thermoplastic polymers or ceramics without detrimental effects on the matrix's intrinsic physical properties.
    • 常规增韧剂通常是橡胶状材料或小分子量分子,其主要牺牲基质的固有性质,例如作为副作用的模量,强度和热稳定性。 另一方面,高模量夹杂物倾向于非常有效地增强弹性模量,但是强度非常好。 例如,具有无机夹杂物的机械增强剂常常降低复合材料的韧性,遇到由碎片和裂纹引起的频繁的灾难性脆性破坏。 因此,增韧通常与机械加强冲突。 碳纳米管由于其非凡的机械,电气和热性能的组合,已经在各种应用中用作有效的增强剂。 此外,纳米管可以延伸超过20%而不产生或破裂,并且在变形期间吸收大量的能量,这使得它们也可以是有效的增​​韧剂,以及优异的增强夹杂物。 因此,通过将纳米管状夹杂物结合到主体基质如热固性和热塑性聚合物或陶瓷中而不会对基体的固有物理性质产生不利影响,提供了改进的增韧方法。
    • 2. 发明授权
    • Nanotubular toughening inclusions
    • 纳米管增韧夹杂物
    • US09074066B2
    • 2015-07-07
    • US13032045
    • 2011-02-22
    • Cheol ParkDennis C. WorkingEmilie J. SiochiJoycelyn S. Harrison
    • Cheol ParkDennis C. WorkingEmilie J. SiochiJoycelyn S. Harrison
    • C08L89/00C08L79/08C08G73/10C08K3/04B82Y30/00C08K7/24
    • C08K7/24B82Y30/00C08K2201/011
    • Conventional toughening agents are typically rubbery materials or small molecular weight molecules, which mostly sacrifice the intrinsic properties of a matrix such as modulus, strength, and thermal stability as side effects. On the other hand, high modulus inclusions tend to reinforce elastic modulus very efficiently, but not the strength very well. For example, mechanical reinforcement with inorganic inclusions often degrades the composite toughness, encountering a frequent catastrophic brittle failure triggered by minute chips and cracks. Thus, toughening generally conflicts with mechanical reinforcement. Carbon nanotubes have been used as efficient reinforcing agents in various applications due to their combination of extraordinary mechanical, electrical, and thermal properties. Moreover, nanotubes can elongate more than 20% without yielding or breaking, and absorb significant amounts of energy during deformation, which enables them to also be an efficient toughening agent, as well as excellent reinforcing inclusion. Accordingly, an improved toughening method is provided by incorporating nanotubular inclusions into a host matrix, such as thermoset and thermoplastic polymers or ceramics without detrimental effects on the matrix's intrinsic physical properties.
    • 常规增韧剂通常是橡胶状材料或小分子量分子,其主要牺牲基质的固有性质,例如作为副作用的模量,强度和热稳定性。 另一方面,高模量夹杂物倾向于非常有效地增强弹性模量,但是强度非常好。 例如,具有无机夹杂物的机械增强剂常常降低复合材料的韧性,遇到由碎片和裂纹引起的频繁的灾难性脆性破坏。 因此,增韧通常与机械加强冲突。 碳纳米管由于其非凡的机械,电气和热性能的组合,已经在各种应用中用作有效的增强剂。 此外,纳米管可以延伸超过20%而不产生或破裂,并且在变形期间吸收大量的能量,这使得它们也可以是有效的增​​韧剂,以及优异的增强夹杂物。 因此,通过将纳米管状夹杂物结合到主体基质如热固性和热塑性聚合物或陶瓷中而不会对基体的固有物理性质产生不利影响,提供了改进的增韧方法。
    • 9. 发明授权
    • Multistage force amplification of piezoelectric stacks
    • 压电堆的多级力放大
    • US09048759B2
    • 2015-06-02
    • US13293846
    • 2011-11-10
    • Tian-Bing XuEmilie J. SiochiLei ZuoXiaoning JiangJin Ho Kang
    • Tian-Bing XuEmilie J. SiochiLei ZuoXiaoning JiangJin Ho Kang
    • H01L41/00H02N2/04H02N2/18
    • H02N2/043H02N2/186
    • Embodiments of the disclosure include an apparatus and methods for using a piezoelectric device, that includes an outer flextensional casing, a first cell and a last cell serially coupled to each other and coupled to the outer flextensional casing such that each cell having a flextensional cell structure and each cell receives an input force and provides an output force that is amplified based on the input force. The apparatus further includes a piezoelectric stack coupled to each cell such that the piezoelectric stack of each cell provides piezoelectric energy based on the output force for each cell. Further, the last cell receives an input force that is the output force from the first cell and the last cell provides an output apparatus force In addition, the piezoelectric energy harvested is based on the output apparatus force. Moreover, the apparatus provides displacement based on the output apparatus force.
    • 本公开的实施例包括一种用于使用压电装置的装置和方法,该装置和方法包括外张力壳体,第一单元和最后一个单元,它们彼此串联连接并耦合到外部弯曲壳体,使得每个单元具有弯曲单元结构 并且每个单元接收输入力并提供基于输入力而被放大的输出力。 该装置还包括耦合到每个单元的压电堆叠,使得每个单元的压电叠层基于每个单元的输出力提供压电能量。 此外,最后一个单元接收作为来自第一单元的输出力的输入力,并且最后一个单元提供输出设备的力。此外,所收集的压电能量基于输出设备的力。 此外,该装置基于输出装置的力提供位移。
    • 10. 发明授权
    • Aligned and electrospun piezoelectric polymer fiber assembly and scaffold
    • 对称和静电压电聚合物纤维组装和支架
    • US09005604B2
    • 2015-04-14
    • US12969076
    • 2010-12-15
    • Lisa A. Scott-CarnellEmilie J. SiochiNancy M. HollowayKam W. LeongKarina Kulangara
    • Lisa A. Scott-CarnellEmilie J. SiochiNancy M. HollowayKam W. LeongKarina Kulangara
    • C12N11/08C12N13/00A61L27/16A61L27/38C12N5/00A61K35/12
    • C12N5/0068A61K35/12A61K35/28A61L27/16A61L27/3834C12N11/08C12N13/00C12N2529/00C12N2533/30C08L27/16
    • A scaffold assembly and related methods of manufacturing and/or using the scaffold for stem cell culture and tissue engineering applications are disclosed which at least partially mimic a native biological environment by providing biochemical, topographical, mechanical and electrical cues by using an electroactive material. The assembly includes at least one layer of substantially aligned, electrospun polymer fiber having an operative connection for individual voltage application. A method of cell tissue engineering and/or stem cell differentiation uses the assembly seeded with a sample of cells suspended in cell culture media, incubates and applies voltage to one or more layers, and thus produces cells and/or a tissue construct. In another aspect, the invention provides a method of manufacturing the assembly including the steps of providing a first pre-electroded substrate surface; electrospinning a first substantially aligned polymer fiber layer onto the first surface; providing a second pre-electroded substrate surface; electrospinning a second substantially aligned polymer fiber layer onto the second surface; and, retaining together the layered surfaces with a clamp and/or an adhesive compound.
    • 公开了制造和/或使用用于干细胞培养和组织工程应用的支架的支架组件和相关方法,其通过使用电活性材料提供生物化学,地形学,机械和电学提示,至少部分地模拟天然生物环境。 该组件包括至少一层基本对准的电纺聚合物纤维,其具有用于单独电压施加的操作连接。 细胞组织工程和/或干细胞分化的方法利用悬浮在细胞培养基中的细胞样品接种组合物,孵育并施加电压至一层或多层,从而产生细胞和/或组织构建体。 另一方面,本发明提供一种制造组件的方法,其包括以下步骤:提供第一预电镀基底表面; 将第一基本上排列的聚合物纤维层静电纺丝到第一表面上; 提供第二预电镀衬底表面; 将第二基本上排列的聚合物纤维层静电纺丝到第二表面上; 并且用夹具和/或粘合剂化合物将层压表面保持在一起。