会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • REALTIME MULTIPLE ENGINE SELECTION AND COMBINING
    • 实时多发动机选择和组合
    • US20120084859A1
    • 2012-04-05
    • US12894185
    • 2010-09-30
    • Kira RadinskyRoy VarshavskyJack W. StokesVladimir HolostovEdward Schaefer
    • Kira RadinskyRoy VarshavskyJack W. StokesVladimir HolostovEdward Schaefer
    • G06F21/00G06F17/30
    • G06F21/563G06F21/56G06Q10/06G06Q30/00
    • Architecture that selects a classification engine based on the expertise of the engine to process a given entity (e.g., a file). Selection of an engine is based on a probability that the engine will detect an unknown entity classification using properties of the entity. One or more of the highest ranked engines are activated in order to achieve the desired performance. A statistical, performance-light module is employed to skip or select several performance-demanding processes. Methods and algorithms are utilized for learning based on matching the best classification engine(s) to detect the entity class based on the entity properties. A user selection option is provided for specifying a maximum number of ranked, classification engines to consider for each state of the machine. A user can also select the minimum probability of detection for a specific entity (e.g., unknown file). The best classifications are re-evaluated over time as the classification engines are updated.
    • 基于引擎的专长来选择分类引擎以处理给定实体(例如,文件)的架构。 引擎的选择是基于引擎将使用实体的属性来检测未知实体分类的概率。 一个或多个最高排名的引擎被激活以实现期望的性能。 采用统计的性能灯模块来跳过或选择若干性能要求高的过程。 基于匹配最佳分类引擎的方法和算法用于学习,以根据实体属性检测实体类。 提供用户选择选项,用于指定针对机器的每个状态考虑的排名最大的分类引擎。 用户还可以选择特定实体(例如,未知文件)的最小检测概率。 随着分类引擎的更新,最好的分类会随着时间的推移重新评估。
    • 2. 发明授权
    • Realtime multiple engine selection and combining
    • 实时多引擎选择和组合
    • US08869277B2
    • 2014-10-21
    • US12894185
    • 2010-09-30
    • Kira RadinskyRoy VarshavskyJack W. StokesVladimir HolostovEdward Schaefer
    • Kira RadinskyRoy VarshavskyJack W. StokesVladimir HolostovEdward Schaefer
    • G06F21/00G06Q30/00G06F21/56
    • G06F21/563G06F21/56G06Q10/06G06Q30/00
    • Architecture that selects a classification engine based on the expertise of the engine to process a given entity (e.g., a file). Selection of an engine is based on a probability that the engine will detect an unknown entity classification using properties of the entity. One or more of the highest ranked engines are activated in order to achieve the desired performance. A statistical, performance-light module is employed to skip or select several performance-demanding processes. Methods and algorithms are utilized for learning based on matching the best classification engine(s) to detect the entity class based on the entity properties. A user selection option is provided for specifying a maximum number of ranked, classification engines to consider for each state of the machine. A user can also select the minimum probability of detection for a specific entity (e.g., unknown file). The best classifications are re-evaluated over time as the classification engines are updated.
    • 基于引擎的专长来选择分类引擎以处理给定实体(例如,文件)的架构。 引擎的选择是基于引擎将使用实体的属性来检测未知实体分类的概率。 一个或多个最高排名的引擎被激活以实现期望的性能。 采用统计的性能灯模块来跳过或选择若干性能要求高的过程。 基于匹配最佳分类引擎的方法和算法用于学习,以根据实体属性检测实体类。 提供用户选择选项,用于指定针对机器的每个状态考虑的排名最大的分类引擎。 用户还可以选择特定实体(例如,未知文件)的最小检测概率。 随着分类引擎的更新,最好的分类会随着时间的推移重新评估。
    • 7. 发明申请
    • SOCIAL INCENTIVES PLATFORM
    • 社会激励平台
    • US20120158477A1
    • 2012-06-21
    • US12970968
    • 2010-12-17
    • Moshe TennenholtzRoy VarshavskyRon KaridiAviv ZoharYuval EmekKira Radinsky
    • Moshe TennenholtzRoy VarshavskyRon KaridiAviv ZoharYuval EmekKira Radinsky
    • G06Q30/00
    • G06Q30/0217G06Q30/0214G06Q50/01
    • A social incentive system is described herein that formalizes information propagation through social networks in a structured and systematic way. The system provides incentives and rewards to entities who participate in propagating the information, allowing heavy influencers to gain from their influence while the marketer rewards them. The system provides one or more tools for creation and design of social incentive plans with rewards for socially distributing information, including marketing campaigns. In particular, the system introduces a semantic framework where marketers can create structured incentive plans for rewarding consumers and distribution platforms for distributing information through social networks. As users complete specified activities they earn points, and the points can be redeemed for various incentives, such as cash, debit cards, prizes, merchandise, subscriptions, and so forth. The framework is robustly designed to avoid abuse and allow for fraud detection.
    • 本文描述了一种社会激励制度,其通过社会网络以组织和系统的方式形式化信息传播。 该系统为参与传播信息的实体提供激励和奖励,让重度影响者从营销人员的奖励中获益。 该系统提供一个或多个工具,用于创建和设计社会激励计划,并提供社会分发信息(包括营销活动)的奖励。 特别是,系统引入了一个语义框架,营销人员可以创建结构化的激励计划,以奖励消费者和通过社交网络分发信息的分发平台。 当用户完成指定的活动时,他们可以获得积分,积分可以兑换现金,借记卡,奖品,商品,订阅等各种奖励。 该框架设计强大,以避免滥用并允许欺诈检测。
    • 9. 发明申请
    • HYBRID RECOMMENDATION SYSTEM
    • 混合推荐系统
    • US20110010366A1
    • 2011-01-13
    • US12500657
    • 2009-07-10
    • Roy VarshavskyMoshe TennenholtzRon Karidi
    • Roy VarshavskyMoshe TennenholtzRon Karidi
    • G06F17/30
    • G06F17/30864G06Q30/02
    • A recommendation system may use a network of relationships between many different entities to find search results and establish a relevance value for the search results. The relevance value may be calculated by analyzing trust and similarity components of each relationship between the search user and the entity providing the search results. The entities may be, for example, persons associated within express or implied social networks, or corporations or other organizations with a historical or other reputation. The relationships may be created through many different contact mechanisms and may be unidirectional, asymmetric bidirectional, or symmetric bidirectional relationships. The relationships may be different based on topic or other factors.
    • 推荐系统可以使用许多不同实体之间的关系网络来查找搜索结果并建立搜索结果的相关性值。 可以通过分析搜索用户和提供搜索结果的实体之间的每个关系的信任和相似性分量来计算相关性值。 实体可以是例如在明示或暗示的社交网络内的人,或具有历史或其他声誉的公司或其他组织。 可以通过许多不同的接触机制来创建关系,并且可以是单向的,不对称的双向的或对称的双向关系。 基于主题或其他因素,关系可能不同。
    • 10. 发明申请
    • ONLINE RELEVANCE ENGINE
    • 在线相关引擎
    • US20100169331A1
    • 2010-07-01
    • US12344812
    • 2008-12-29
    • Ron KaridiRoy VarshavskyNoga AmitOded ElyadaDaniel SittonLimor LahianiHen FitoussiEran YarivBenny Schlesinger
    • Ron KaridiRoy VarshavskyNoga AmitOded ElyadaDaniel SittonLimor LahianiHen FitoussiEran YarivBenny Schlesinger
    • G06F7/06G06F17/30G06F7/00
    • G06F17/30864
    • Information is automatically located which is relevant to source content that a user is viewing on a user interface without requiring the user to perform an additional search or navigate links of the source content. The source content can be, e.g., a web page or a document from a word processing or email application. The relevant information can include images, videos, web pages, maps or other location-based information, people-based information and special services which aggregate different types of information. Related content is located by analyzing textual content, user behavior and connectivity relative to the source. The related content is scored for similarity to the source. Content which is sufficiently similar but not too similar is selected. Similar related content is grouped to select representative results. The selected content is filtering in multiple stages based on attribute priorities to avoid unnecessary processing of content which is filtered out an early stage.
    • 自动定位与用户正在用户界面上观看的源内容相关的信息,而不需要用户执行附加搜索或浏览源内容的链接。 源内容可以是例如网页或来自文字处理或电子邮件应用的文档。 相关信息可以包括图像,视频,网页,地图或其他基于位置的信息,基于人群的信息和聚合不同类型信息的特殊服务。 通过分析文本内容,用户行为和相对于源的连接来定位相关内容。 相关内容的得分与来源相似。 选择足够相似但不太相似的内容。 类似的相关内容被分组以选择代表性的结果。 所选择的内容是基于属性优先级在多个阶段进行过滤,以避免对早期过滤掉的内容进行不必要的处理。