会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Method for fabricating shaped monolithic ceramics and ceramic composites through displacive compensation of porosity, and ceramics and composites made thereby
    • 通过孔隙度的置换补偿制造成形的整体陶瓷和陶瓷复合材料的方法,以及由此制成的陶瓷和复合材料
    • US06833337B2
    • 2004-12-21
    • US10158600
    • 2002-05-30
    • Kenneth H. SandhagePragati Kumar
    • Kenneth H. SandhagePragati Kumar
    • C04B3800
    • C22C1/1036C04B35/622Y10T428/249957
    • The present invention is a method for fabricating shaped monolithic ceramics and ceramic composites, and the ceramics and composites made thereby. The method of the present invention includes three basic steps: (1) Synthesis or other acquisition of a porous preform with an appropriate composition, pore fraction, and overall shape is prepared or obtained. The pore fraction of the preform is tailored so that the reaction-induced increase in solid volume can compensate partially or completely for such porosity. It will be understood that the porous preform need only be sufficiently dimensionally stable to resist the capillary action of the infiltrated liquid reactant; (2) Infiltration: The porous preform is infiltrated with a liquid reactant; and (3) Reaction: The liquid reactant is allowed to react partially or completely with the solid preform to produce a dense, shaped body containing desired ceramic phase(s). The reaction in step (3) above is a displacement reaction of the following general type between a liquid species, M(l), and a solid preform comprising the compound, NBXC(s): AM(l)+NBXC(s)=AMXC/A(s)+BN(l/g) where MXC/A(s) is a solid reaction product (X is a metalloid element, such as, for example, oxygen, nitrogen, sulfur, etc.) and N(l/g) is a fluid (liquid or gas) reaction product. A, B and C are molar coefficients.
    • 本发明是一种制造成形的整体陶瓷和陶瓷复合材料的方法,以及由此制成的陶瓷和复合材料。 本发明的方法包括三个基本步骤:(1)制备或获得具有适当组成,孔隙分数和整体形状的多孔预型体的合成或其它方法。 定制预制件的孔隙分数,使得反应引起的固体体积增加可以部分地或完全地补偿这种孔隙率。 应当理解,多孔预成型件仅需要足够的尺寸稳定性以抵抗渗透的液体反应物的毛细管作用; (2)渗透:多孔预型体用液体反应物渗透; 和(3)反应:使液体反应物部分或完全与固体预成型体反应,以产生含有所需陶瓷相的致密的成型体。 上述步骤(3)中的反应是液体物质M(1)和包含该化合物NBXC的固体预制品之间的以下通用类型的置换反应:AM(1)+ NBXC(s)= AMXC / A(s)+ BN(1 / g)其中MXC / A(s)是固体反应产物(X是类金属元素,例如氧,氮,硫等)和N( l / g)是流体(液体或气体)反应产物。 A,B和C是摩尔系数。
    • 2. 发明授权
    • Method for fabricating shaped monolithic ceramics
    • 成型整体陶瓷的制造方法
    • US06407022B1
    • 2002-06-18
    • US09296138
    • 1999-04-21
    • Kenneth H. SandhagePragati Kumar
    • Kenneth H. SandhagePragati Kumar
    • C04B3800
    • C22C1/1036C04B35/622Y10T428/249957
    • The process of the present invention comprises a method for fabricating shaped monolithic ceramics and ceramic composites through displacive compensation of porosity, and ceramics and composites made thereby. The method of the present invention includes three basic steps: 1) Synthesis or other acquisition of a porous preform: A porous preform with an appropriate composition, pore fraction, and overall shape is prepared or obtained. The pore fraction of the preform is tailored so that the reaction-induced increase in solid volume can compensate partially or completely for such porosity. It will be understood that the porous preform need only be sufficiently dimensionally stable to resist the capillary action of the infiltrated liquid reactant; 2) Infiltration: The porous preform is infiltrated with a liquid reactant; and 3) Reaction: The liquid reactant is allowed to react partially or completely with the solid preform to produce a dense, shaped body containing desired ceramic phase(s). The reaction in step 3) above is a displacement reaction of the following general type between a liquid species, M(l), and a solid preform comprising the compound, NBXC(s): AM(l)+NBXC(s)=AMXC/A(s)+BN(l/g)(2) where MXC/A(s) is a solid reaction product (X is a metalloid element, such as, for example, oxygen, nitrogen, sulfur, etc.) and N(l/g) is a fluid (liquid or gas) reaction product. A, B and C are molar coefficients.
    • 本发明的方法包括通过孔隙度的置换补偿制造成形的整体陶瓷和陶瓷复合材料的方法,以及由此制成的陶瓷和复合材料。 本发明的方法包括三个基本步骤:1)多孔预型体的合成或其它的获取:制备或获得具有适当组成,孔隙率和整体形状的多孔预成型体。 定制预制件的孔隙分数,使得反应引起的固体体积增加可以部分地或完全地补偿这种孔隙率。 应当理解,多孔预成型件仅需要足够的尺寸稳定性以抵抗渗透的液体反应物的毛细管作用; 2)渗透:多孔预型体用液体反应物渗透; 和3)反应:使液体反应物部分或完全与固体预成型体反应,以产生含有所需陶瓷相的致密的成型体。上述步骤3)中的反应是以下通用类型的位移反应 液体物质M(1)和包含该化合物NBXC的固体预制品:其中MXC / A(s)是固体反应产物(X是类金属元素,例如氧,氮 ,硫等)和N(1 / g)是流体(液体或气体)反应产物。 A,B和C是摩尔系数。
    • 3. 发明授权
    • System and method for step coverage measurement
    • 步骤覆盖测量的系统和方法
    • US08486727B2
    • 2013-07-16
    • US12946846
    • 2010-11-15
    • Hanhong ChenEdward HaywoodPragati Kumar
    • Hanhong ChenEdward HaywoodPragati Kumar
    • G01R31/26H01L21/66
    • G01N23/223H01L22/12
    • Determining an unknown step coverage of a thin film deposited on a 3D wafer includes exposing a planar wafer comprising a first film deposited thereon to X-ray radiation to create first fluorescent radiation; detecting the first fluorescent radiation; measuring a number of XRF counts on the planar wafer; creating an XRF model of the planar wafer; providing a portion of the 3D wafer comprising troughs and a second film deposited thereon; determining a multiplier factor between the portion of the 3D wafer and the planar wafer; exposing the portion of the 3D wafer to X-ray radiation to create second fluorescent radiation; detecting the second fluorescent radiation; measuring a number of XRF counts on the portion of the 3D wafer; calculating a step coverage of the portion of the 3D wafer; and determining a uniformity of the 3D wafer based on the step coverage of the portion of the 3D wafer.
    • 确定沉积在3D晶片上的薄膜的未知步骤覆盖包括将包括沉积在其上的第一膜的平面晶片暴露于X射线辐射以产生第一荧光辐射; 检测第一荧光辐射; 测量平面晶片上的XRF数量; 创建平面晶片的XRF模型; 提供包括槽的3D晶片的一部分和沉积在其上的第二膜; 确定所述3D晶片的所述部分和所述平面晶片之间的乘数; 将3D晶片的部分暴露于X射线辐射以产生第二荧光辐射; 检测第二荧光辐射; 测量3D晶片部分上的XRF数量; 计算3D晶片的部分的台阶覆盖; 以及基于所述3D晶片的所述部分的台阶覆盖来确定所述3D晶片的均匀性。
    • 5. 发明授权
    • Methods for forming resistive-switching metal oxides for nonvolatile memory elements
    • 用于形成用于非易失性存储元件的电阻式开关金属氧化物的方法
    • US08367463B2
    • 2013-02-05
    • US13111230
    • 2011-05-19
    • Pragati KumarSandra G. MalhotraSean BarstowTony Chiang
    • Pragati KumarSandra G. MalhotraSean BarstowTony Chiang
    • H01L21/00H01L21/16H01L21/20H01L21/36
    • H01L45/1625H01L27/2409H01L27/2463H01L45/04H01L45/1233H01L45/146H01L45/1641
    • Nonvolatile memory elements are provided that have resistive switching metal oxides. The nonvolatile memory elements may be formed from resistive-switching metal oxide layers. Metal oxide layers may be formed using sputter deposition at relatively low sputtering powers, relatively low duty cycles, and relatively high sputtering gas pressures. Dopants may be incorporated into a base oxide layer at an atomic concentration that is less than the solubility limit of the dopant in the base oxide. At least one oxidation state of the metal in the base oxide is preferably different than at least one oxidation sate of the dopant. The ionic radius of the dopant and the ionic radius of the metal may be selected to be close to each other. Annealing and oxidation operations may be performed on the resistive switching metal oxides. Bistable metal oxides with relatively large resistivities and large high-state-to-low state resistivity ratios may be produced.
    • 提供具有电阻开关金属氧化物的非易失性存储元件。 非易失性存储元件可以由电阻式开关金属氧化物层形成。 金属氧化物层可以使用相对低的溅射功率,相对低的占空比和较高的溅射气体压力的溅射沉积形成。 掺杂剂可以以小于基底氧化物中的掺杂剂的溶解度极限的原子浓度结合到基底氧化物层中。 基底氧化物中金属的至少一种氧化态优选不同于掺杂剂的至少一种氧化态。 可以选择掺杂剂的离子半径和金属的离子半径彼此接近。 可以对电阻式开关金属氧化物进行退火和氧化操作。 可以制造具有相对较大的电阻率和大的高 - 低 - 电阻率比的双稳态金属氧化物。