会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Vehicle lighting system
    • 车辆照明系统
    • US08297812B2
    • 2012-10-30
    • US12694646
    • 2010-01-27
    • Kazuyuki MaruyamaYutaka MurataYojiro TsutsumiToru Miyagawa
    • Kazuyuki MaruyamaYutaka MurataYojiro TsutsumiToru Miyagawa
    • B62J6/00
    • B60Q1/18B60Q1/0041B60Q1/2665B60Q2400/30B60R1/1207B62J6/02
    • A vehicle lighting system having a plurality of lighting apparatuses disposed so as to make a vehicle front surface reminiscent of a “face,” wherein an outline of a light-emitting surface of each of the lighting apparatuses from blurring to be fused. A glare area G has a width y as expressed in an expression “y=a+b·ln(x) (ln is a natural logarithm),” “a=−107,” and “b=39.6” when a main lighting apparatus has a luminous intensity of x is defined outside an outline OL of a main light-emitting surface in a vehicle front view, and an auxiliary lighting apparatus disposition area, in which an auxiliary lighting apparatus of a steadily lighting type different from a flashing type lighting apparatus is disposed, is set upwardly of the main lighting apparatus and outside the glare area G.
    • 一种车辆用照明系统,其具有多个照明装置,所述多个照明装置被配置为使得车辆前方表面与人脸相反,其中,每个所述照明装置的发光面的轮廓由于模糊而被融合。 眩光区域G具有表达式y = a + b·ln(x)(ln是自然对数),a = -107和b = 39.6中表示的宽度y,当主照明装置的发光强度为 在车辆正视图中,将主体发光面的轮廓OL设定在外侧,在与辅助照明装置不同的辅助照明装置配置的辅助照明装置配置区域中, 设置在主照明装置的上方并在眩光区域G的外侧。
    • 2. 发明申请
    • VEHICLE LIGHTING SYSTEM
    • 车辆照明系统
    • US20100195340A1
    • 2010-08-05
    • US12694646
    • 2010-01-27
    • Kazuyuki MaruyamaYutaka MurataYojiro TsutsumiToru Miyagawa
    • Kazuyuki MaruyamaYutaka MurataYojiro TsutsumiToru Miyagawa
    • B62J6/00
    • B60Q1/18B60Q1/0041B60Q1/2665B60Q2400/30B60R1/1207B62J6/02
    • A vehicle lighting system having a plurality of lighting apparatuses disposed so as to make a vehicle front surface reminiscent of a “face,” wherein an outline of a light-emitting surface of each of the lighting apparatuses from blurring to be fused. A glare area G has a width y as expressed in an expression “y=a+b·ln(x) (ln is a natural logarithm),” “a=−107,” and “b=39.6” when a main lighting apparatus has a luminous intensity of x is defined outside an outline OL of a main light-emitting surface in a vehicle front view, and an auxiliary lighting apparatus disposition area, in which an auxiliary lighting apparatus of a steadily lighting type different from a flashing type lighting apparatus is disposed, is set upwardly of the main lighting apparatus and outside the glare area G.
    • 一种车辆照明系统,具有多个照明装置,其被设置为使得车辆前表面与“面”相呼应,其中每个照明装置的发光面的轮廓由于模糊而被融合。 眩光区域G具有如下表达的宽度y,即当主照明(a)为“y = a + b·ln(x)(ln为自然对数)”,“a = -107”,“b = 在车辆前视图中,将发光强度x定义在主发光面的轮廓OL的外侧,以及辅助照明装置配置区域,其中,与闪光型不同的稳定照明类型的辅助照明装置 照明装置设置在主照明装置的上方并在眩光区域G的外侧。
    • 9. 发明授权
    • Legged robot
    • 有腿的机器人
    • US08150550B2
    • 2012-04-03
    • US12439195
    • 2007-09-06
    • Keisuke SugaDaisaku HondaToru MiyagawaRyosuke Tajima
    • Keisuke SugaDaisaku HondaToru MiyagawaRyosuke Tajima
    • G05B19/18G05B15/00G05B19/00G06F19/00
    • B62D57/032
    • A legged robot that runs while repeating a jump cycle including a ground-contact phase from a landing to a takeoff and an aerial phase from a takeoff to a landing is provided. The legged robot adjusts the landing timing after a jump in accordance with a planned timing, thereby attaining a smooth landing. A measuring unit of the legged robot measures an actual aerial phase period in a k-th jump cycle. A subtractor calculates a time difference between a target aerial phase period and the actual aerial phase period in the k-th jump cycle. A target velocity determining unit calculates a target vertical velocity of a center of gravity on a takeoff timing in a (k+1)-th jump cycle so as to eliminate the time difference. Motors in respective joints are controlled so as to realize the calculated target vertical velocity in the (k+1)-th jump cycle. As a result, the time difference generated in the k-th jump cycle in the (k+1)-th jump cycle can be compensated, thereby adjusting the landing timing with the planned landing timing, resulting in the jump motion with smooth landing.
    • 提供了一种腿式机器人,其重复跳跃循环,包括从起落架到起飞的地面接触阶段,以及从起飞到着陆的空中阶段。 腿式机器人根据计划的时间调整跳跃之后的着陆时间,从而实现平稳的着陆。 腿式机器人的测量单元在第k个跳跃循环中测量实际的空中相位周期。 减法器计算第k个跳跃周期中的目标空中相位周期和实际空中相位周期之间的时间差。 目标速度确定单元计算第(k + 1)个跳跃周期中的起飞时刻的重心的目标垂直速度,以消除时差。 控制各个关节中的电动机,以便在第(k + 1)个跳跃循环中实现所计算的目标垂直速度。 结果,可以补偿在第(k + 1)个跳跃周期中的第k个跳跃周期中产生的时间差,从而利用计划的着陆定时调整着陆时间,导致具有平滑着陆的跳跃运动。
    • 10. 发明申请
    • LEGGED ROBOT
    • LEGGED机器人
    • US20100017028A1
    • 2010-01-21
    • US12439195
    • 2007-09-06
    • Keisuke SugaDaisaku HondaToru MiyagawaRyosuke Tajima
    • Keisuke SugaDaisaku HondaToru MiyagawaRyosuke Tajima
    • B25J5/00B25J13/00
    • B62D57/032
    • A legged robot that runs while repeating a jump cycle including a ground-contact phase from a landing to a takeoff and an aerial phase from a takeoff to a landing is provided. The legged robot adjusts the landing timing after a jump in accordance with a planned timing, thereby attaining a smooth landing. A measuring unit of the legged robot measures an actual aerial phase period in a k-th jump cycle. A subtractor calculates a time difference between a target aerial phase period and the actual aerial phase period in the k-th jump cycle. A target velocity determining unit calculates a target vertical velocity of a center of gravity on a takeoff timing in a (k+1)-th jump cycle so as to eliminate the time difference. Motors in respective joints are controlled so as to realize the calculated target vertical velocity in the (k+1)-th jump cycle. As a result, the time difference generated in the k-th jump cycle in the (k+1)-th jump cycle can be compensated, thereby adjusting the landing timing with the planned landing timing, resulting in the jump motion with smooth landing.
    • 提供了一种腿式机器人,其重复跳跃循环,包括从起落架到起飞的地面接触阶段,以及从起飞到着陆的空中阶段。 腿式机器人根据计划的时间调整跳跃之后的着陆时间,从而实现平稳的着陆。 腿式机器人的测量单元在第k个跳跃循环中测量实际的空中相位周期。 减法器计算第k个跳跃周期中的目标空中相位周期和实际空中相位周期之间的时间差。 目标速度确定单元计算第(k + 1)个跳跃周期中的起飞时刻的重心的目标垂直速度,以消除时差。 控制各个关节中的电动机,以便在第(k + 1)个跳跃循环中实现所计算的目标垂直速度。 结果,可以补偿在第(k + 1)个跳跃周期中的第k个跳跃周期中产生的时间差,由此通过计划的着陆定时调整着陆时间,导致具有平滑着陆的跳跃运动。