会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Thermal shield device and crystal-pulling apparatus using the same
    • 热屏蔽装置和使用其的拉晶装置
    • US06379460B1
    • 2002-04-30
    • US09644183
    • 2000-08-23
    • Kazuhiro HaradaYoji SuzukiSenlin FuHisashi Furuya
    • Kazuhiro HaradaYoji SuzukiSenlin FuHisashi Furuya
    • C30B3500
    • C30B15/14Y10S117/90Y10T117/10Y10T117/1068Y10T117/1072Y10T117/1088
    • A thermal shield device is equipped in a crystal-pulling apparatus for pulling a silicon monocrystal ingot from a silicon melt reserved in a quartz crucible having an outer peripheral surface encircled with a heater. The thermal shield device has a tubular part to be used for surrounding a silicon monocrystal ingot being pulled and grown in an upward direction to prevent radiant heat from the heater toward the silicon monocrystal ingot. The tubular part has a lower end positioned above a surface of the silicon melt with a predetermined spacing therebetween. A protruding part is formed on a lower portion of the tubular part and filled with a thermal-insulating member. The protruding part extends to the inside of the tubular part and has a bottom wall, a vertical wall, and a top wall. The bottom wall is shaped like a ring having an outer edge connected to a lower edge of the tubular part and extends to the proximity of an outer peripheral surface of the silicon monocrystal ingot. The vertical wall is positioned at a predetermined distance from the outer peripheral surface of the silicon monocrystal ingot and connected to an inner edge of the bottom wall. The top wall has a lower edge connected to an upper edge of the vertical wall and an upper edge attached to an inner peripheral surface of the tubular part and extends in an upward direction with a gradual increase in diameter.
    • 一种用于从保存在具有被加热器包围的外周表面的石英坩埚中保存的硅熔体拉出硅单晶锭的晶体拉制装置中装备有热屏蔽装置。 该热屏蔽装置具有管状部件,用于围绕沿着向上方向拉伸和生长的硅单晶锭,以防止来自加热器的辐射热向硅单晶锭。 管状部分具有位于硅熔体表面上方的预定间隔的下端。 突出部形成在筒状部的下部并填充有绝热构件。 突出部分延伸到管状部分的内部,并具有底壁,垂直壁和顶壁。 底壁的形状为具有连接到管状部分的下边缘的外边缘并且延伸到硅单晶锭的外周表面附近的环。 垂直壁位于与硅单晶锭的外周表面预定的距离处并连接到底壁的内边缘。 顶壁具有连接到垂直壁的上边缘的下边缘,并且附接到管状部分的内周表面的上边缘并且沿着直径逐渐增加的向上方向延伸。
    • 2. 发明授权
    • Heat shielding member of silicon single crystal pulling system
    • 硅单晶拉制系统的隔热构件
    • US07294203B2
    • 2007-11-13
    • US10527566
    • 2003-09-12
    • Kazuhiro HaradaYoji SuzukiSenlin FuHisashi FuruyaHidenobu Abe
    • Kazuhiro HaradaYoji SuzukiSenlin FuHisashi FuruyaHidenobu Abe
    • C30B35/00
    • C30B29/06C30B15/14C30B15/203Y10T117/1068Y10T117/1072Y10T117/1076Y10T117/1088
    • A heat shielding member is provided in a device pulling up a silicon single crystal rod from a silicon melt stored in a quartz crucible, and equipped with a tube portion which shields radiant heat from the heater surrounding the outer peripheral face of the silicon single crystal rod, a swelling portion provided at the lower portion of the tube portion, and a ring-shape heat accumulating portion provided at the inside of the swelling portion. The heat accumulating portion is a thermal conductivity of 5 W/(m·° C.) or less, its inner peripheral face is a height (H1) of 10 mm or more and d/2 or less when the diameter of the silicon single crystal rod is referred to as d and the minimum distance (W1) between the outer peripheral face of the silicon single crystal rod and the inner peripheral face of the heat accumulating portion is formed so as to be 10 mm or more and 0.2 d or less, a vertical distance (H2) between the upper rim of the outer peripheral face and the lowest portion of the heat accumulating portion is 10 mm or more and d or less, and the minimum distance (W2) between the inner peripheral face of the quartz crucible and the outer peripheral face of the heat accumulating portion is 20 mm or more and d/4 or less.
    • 在从存储在石英坩埚中的硅熔体中拉出硅单晶棒的装置中设置有隔热构件,并且配备有将来自围绕硅单晶棒的外周面的加热器的辐射热屏蔽的管部 ,设置在管部的下部的隆起部,以及设置在隆起部的内侧的环状积蓄部。 蓄热部的热导率为5W /(m·℃)以下,其内周面为10mm以上且d / 2以上的高度(H <1),或 硅单晶棒的直径称为d,硅单晶棒的外周面与蓄热的内周面之间的最小距离(W 1> 1)较小 部分形成为10mm以上且0.2d以下,外周面的上缘和蓄热部的最下部之间的垂直距离(H 2 2 N)为 10mm以上且d以下,石英坩埚的内周面与蓄热部的外周面之间的最小距离(W 2 2 <2)为20mm以上,d / 4以下。
    • 3. 发明申请
    • Heat shielding member of silicon single crystal pulling system
    • 硅单晶拉制系统的隔热构件
    • US20060124052A1
    • 2006-06-15
    • US10527566
    • 2003-09-12
    • Kazuhiro HaradaYoji SuzukiSenlin FuHisashi FuruyaHidenobu Abe
    • Kazuhiro HaradaYoji SuzukiSenlin FuHisashi FuruyaHidenobu Abe
    • C30B15/00
    • C30B29/06C30B15/14C30B15/203Y10T117/1068Y10T117/1072Y10T117/1076Y10T117/1088
    • A heat shielding member is provided in a device pulling up a silicon single crystal rod from a silicon melt stored in a quartz crucible, and equipped with a tube portion which shields radiant heat from the heater surrounding the outer peripheral face of the silicon single crystal rod, a swelling portion provided at the lower portion of the tube portion, and a ring-shape heat accumulating portion provided at the inside of the swelling portion. The heat accumulating portion is a thermal conductivity of 5 W/(m·° C.) or less, its inner peripheral face is a height (H1) of 10 mm or more and d/2 or less when the diameter of the silicon single crystal rod is referred to as d and the minimum distance (W1) between the outer peripheral face of the silicon single crystal rod and the inner peripheral face of the heat accumulating portion is formed so as to be 10 mm or more and 0.2 d or less, a vertical distance (H2) between the upper rim of the outer peripheral face and the lowest portion of the heat accumulating portion is 10 mm or more and d or less, and the minimum distance (W2) between the inner peripheral face of the quartz crucible and the outer peripheral face of the heat accumulating portion is 20 mm or more and d/4 or less.
    • 在从存储在石英坩埚中的硅熔体中拉出硅单晶棒的装置中设置有隔热构件,并且配备有将来自围绕硅单晶棒的外周面的加热器的辐射热屏蔽的管部 ,设置在管部的下部的隆起部,以及设置在隆起部的内侧的环状积蓄部。 蓄热部的热导率为5W /(m·℃)以下,其内周面为10mm以上且d / 2以上的高度(H <1),或 硅单晶棒的直径称为d,硅单晶棒的外周面与蓄热的内周面之间的最小距离(W 1> 1)较小 部分形成为10mm以上且0.2d以下,外周面的上缘和蓄热部的最下部之间的垂直距离(H 2 2 N)为 10mm以上且d以下,石英坩埚的内周面与蓄热部的外周面之间的最小距离(W 2 2 <2)为20mm以上,d / 4以下。
    • 4. 发明授权
    • Silicon single crystal pulling method
    • 硅单晶拉拔法
    • US07282095B2
    • 2007-10-16
    • US10561820
    • 2005-01-25
    • Kazuhiro HaradaNorihito FukatsuSenlin FuYoji Suzuki
    • Kazuhiro HaradaNorihito FukatsuSenlin FuYoji Suzuki
    • C30B15/20
    • C30B15/14C30B15/305C30B29/06C30B35/00Y10S117/917Y10T117/1068Y10T117/1072
    • [Problem] A silicon single crystal ingot in which point defect agglomerates do not exist over a substantially entire length thereof is manufactured without reducing a pure margin.[Solving Means] A heat shielding member 36 comprises a bulge portion 41 which is provided to bulge in an in-cylinder direction at a lower portion of a cylindrical portion 37 and has a heat storage member 47 provided therein. A flow quantity of an inert gas flowing down between the bulge portion 41 in the heat shielding member 36 and an ingot 25 when pulling up a top-side ingot 25a of the silicon single crystal ingot 25 is set larger than a flow quantity of the inert gas flowing down between the bulge portion 41 and the ingot 25 when pulling up a bottom-side ingot 25b of the silicon single crystal ingot 25, thereby pulling up the ingot 25. Alternatively, an intensity of a cusp magnetic field 53 when pulling up the top-side ingot 25a is set higher than an intensity of the cusp magnetic field 53 when pulling up the bottom-side ingot 25b.
    • [问题]制造在其基本上整个长度上不存在点缺陷聚集体的硅单晶锭,而不会减少纯净余量。 遮蔽构件36包括凸出部分41,该凸起部分41设置成在圆柱形部分37的下部处沿缸内方向凸起并且具有设置在其中的储热构件47。 在将硅单晶锭25的顶侧铸锭25a拉起时,在隔热部件36的隆起部41与锭体25之间向下流动的惰性气体的流量被设定为大于 当拉起硅单晶锭25的底侧晶锭25b时,惰性气体在凸起部41和锭25之间向下流动,从而拉出铸块25。 或者,当拉起顶侧晶锭25a时,尖端磁场53的强度被设定为高于尖端磁场53的强度时,拉动底侧晶锭25b。
    • 6. 发明授权
    • Silicon wafer, and heat treatment method of the same and the heat-treated silicon wafer
    • 硅晶片及其热处理方法和热处理硅晶片
    • US06682597B2
    • 2004-01-27
    • US10162012
    • 2002-06-03
    • Hiroshi KoyaHisashi FuruyaYoji SuzukiYukio MuroiTakaaki Shiota
    • Hiroshi KoyaHisashi FuruyaYoji SuzukiYukio MuroiTakaaki Shiota
    • C30B2814
    • C30B15/203C30B29/06
    • A method of heat-treating a silicon wafer has the steps of: preparing a silicon wafer having an oxygen concentration of 1.2×1018 atoms/cm3 or less (old ASTM) without generating crystal originated particles(COP'S) and interstitial-type large dislocation(L/D); forming a polysilicon layer of 0.1 &mgr;m to 1.6 &mgr;m in thickness on a back of the silicon wafer by a chemical-vapor deposition at a temperature of 670° C.±30° C.; and heat-treating the silicon wafer having the polysilicon layer in an oxygen atmosphere at 1000° C.±30° C. for 2 to 5 hours and subsequently at 1130° C.±30° C. for 1 to 16 hours. In this method, the silicon wafer before the formation of the polysilicon layer thereon is the type of a wafer in which oxidation induced stacking faults(OSF's) manifest itself at a center of the wafer when the wafer is subjected to the heat-treatment. Accordingly, the resulting silicon wafer with a polysilicon layer is of OSF fee and COP free, even when the wafer is subjected to the conventional OSF-manifesting heat treatment. The wafer with the polysilicon layer exerts a uniform gettering effect between the peripheral edge and center of the silicon wafer as a result of a uniform oxygen precipitation occurred at the entire surface of the silicon wafer.
    • 硅晶片的热处理方法具有以下步骤:制备氧浓度为1.2×10 18原子/ cm 3或更低(旧ASTM)的硅晶片,而不产生晶体起始颗粒(COP'S)和间隙 型大位错(L / D); 通过在670℃±30℃的温度下的化学气相沉积在硅晶片的背面上形成厚度为0.1μm至1.6μm的多晶硅层。 在氧气氛下,在1000℃±30℃下,将具有多晶硅层的硅晶片热处理2〜5小时,然后在1130℃±30℃下热处理1〜16小时。 在该方法中,在其上形成多晶硅层之前的硅晶片是当晶片进行热处理时,氧化诱导堆垛层错(OSF)在晶片的中心处显现的晶片的类型。 因此,即使当经过常规的OSF显示热处理时,所得到的具有多晶硅层的硅晶片也具有OSF费用和COP。 具有多晶硅层的晶片在硅晶片的整个表面上发生均匀的氧沉淀的结果,在硅晶片的外围边缘和中心之间施加均匀的吸气效应。
    • 7. 发明授权
    • Silicon wafer, and heat treatment method of the same and the heat-treated silicon wafer
    • 硅晶片及其热处理方法和热处理硅晶片
    • US06428619B1
    • 2002-08-06
    • US09694163
    • 2000-10-23
    • Hiroshi KoyaHisashi FuruyaYoji SuzukiYukio MuroiTakaaki Shiota
    • Hiroshi KoyaHisashi FuruyaYoji SuzukiYukio MuroiTakaaki Shiota
    • C30B2502
    • C30B29/06C30B33/00H01L21/3221H01L21/3225Y10T428/24942
    • A method of heat-treating a silicon wafer has the steps of: preparing a silicon wafer having an oxygen concentration of 1.2×1018 atoms/cm3 or less (old ASTM) without generating crystal originated particles(COP'S) and interstitial-type large dislocation(L/D); forming a polysilicon layer of 0.1 &mgr;m to 1.6 &mgr;m in thickness on a back of the silicon wafer by a chemical-vapor deposition at a temperature of 670° C.±30° C.; and heat-treating the silicon wafer having the polysilicon layer in an oxygen atmosphere at 1000° C.±30° C. for 2 to 5 hours and subsequently at 1130° C.±30° C. for 1 to 16 hours. In this method, the silicon wafer before the formation of the polysilicon layer thereon is the type of a wafer in which oxidation induced stacking faults(OSF's) manifest itself at a center of the wafer when the wafer is subjected to the heat-treatment. Accordingly, the resulting silicon wafer with a polysilicon layer is of OSF fee and COP free, even when the wafer is subjected to the conventional OSF-manifesting heat treatment. The wafer with the polysilicon layer exerts a uniform gettering effect between the peripheral edge and center of the silicon wafer as a result of a uniform oxygen precipitation occurred at the entire surface of the silicon wafer.
    • 硅晶片的热处理方法具有以下步骤:制备氧浓度为1.2×1018原子/ cm3以下(旧ASTM)的硅晶片,不产生晶体起始粒子(COP'S)和间隙型大位错(L / D); 通过在670℃±30℃的温度下的化学气相沉积在硅晶片的背面上形成厚度为0.1μm至1.6μm的多晶硅层。 在氧气氛中,在1000℃±30℃下,将具有多晶硅层的硅晶片热处理2〜5小时,然后在1130℃±30℃下热处理1〜16小时。 在该方法中,在其上形成多晶硅层之前的硅晶片是当晶片进行热处理时,氧化诱导堆垛层错(OSF)在晶片的中心处显现的晶片的类型。 因此,即使当经过常规的OSF显示热处理时,所得到的具有多晶硅层的硅晶片也具有OSF费用和COP。 具有多晶硅层的晶片在硅晶片的整个表面上发生均匀的氧沉淀的结果,在硅晶片的外围边缘和中心之间施加均匀的吸气效应。