会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明申请
    • Image input device
    • 图像输入设备
    • US20060072029A1
    • 2006-04-06
    • US10532659
    • 2003-10-24
    • Shigehiro MiyatakeJun TanidaKenji Yamada
    • Shigehiro MiyatakeJun TanidaKenji Yamada
    • H04N5/225H01L27/00
    • G02B3/0056H04N5/2253H04N5/2254H04N5/23229H04N9/045
    • An image input apparatus which reconfigures a single reconfigured image from a plurality of low-resolution, object reduced images formed in a specified region on the light detecting element by the micro-lens array, wherein a high-resolution, single reconfigured image can be obtained even if the distance between the subject and the micro-lens array is long (infinitely long, for example), and further a reconfigured image can be realized in colors. The image input apparatus is characterized in that the relative distance between a micro-lens (1a) and light detecting cells (3a) in a specified region, where object reduced images corresponding to the micro-lens (1a) are formed, is different in each micro-lenses (1a). In addition, the light detecting cells (3a) are divided into a plurality of regions, and color filters (primary color filter, or complementary color filter, for example) are disposed in each of the divided regions.
    • 一种图像输入装置,其通过微透镜阵列从形成在光检测元件上的指定区域中的多个低分辨率对象缩小图像重新配置单个重新配置的图像,其中可以获得高分辨率单个重新配置的图像 即使被摄体和微透镜阵列之间的距离长(例如无限长),并且还可以以颜色实现重新配置的图像。 图像输入装置的特征在于,在形成有对应于微透镜(1a)的物体缩小图像的特定区域中的微透镜(1a)和光检测单元(3a)之间的相对距离, 在每个微透镜(1a)中是不同的。 此外,光检测单元(3a)被分成多个区域,并且在每个分割区域中设置滤色器(例如,原色滤色器或补色滤色器)。
    • 3. 发明授权
    • Image input apparatus
    • 图像输入装置
    • US07529383B2
    • 2009-05-05
    • US10532659
    • 2003-10-24
    • Shigehiro MiyatakeJun TanidaKenji Yamada
    • Shigehiro MiyatakeJun TanidaKenji Yamada
    • G06K9/00H04N5/225C09K19/52H01L37/00
    • G02B3/0056H04N5/2253H04N5/2254H04N5/23229H04N9/045
    • An image input apparatus which reconfigures a single reconfigured image from a plurality of low-resolution, object reduced images formed in a specified region on the light detecting element by the micro-lens array, wherein a high-resolution, single reconfigured image can be obtained even if the distance between the subject and the micro-lens array is long (infinitely long, for example), and further a reconfigured image can be realized in colors. The image input apparatus is characterized in that the relative distance between a micro-lens (1a) and light detecting cells (3a) in a specified region, where object reduced images corresponding to the micro-lens (1a) are formed, is different in each micro-lenses (1a). In addition, the light detecting cells (3a) are divided into a plurality of regions, and color filters (primary color filter, or complementary color filter, for example) are disposed in each of the divided regions.
    • 一种图像输入装置,其通过微透镜阵列从形成在光检测元件上的指定区域中的多个低分辨率对象缩小图像重新配置单个重新配置的图像,其中可以获得高分辨率单个重新配置的图像 即使被摄体和微透镜阵列之间的距离长(例如无限长),并且还可以以颜色实现重新配置的图像。 该图像输入装置的特征在于,在形成与微透镜(1a)对应的物体缩小图像的特定区域中的微透镜(1a)和光检测单元(3a)之间的相对距离不同 每个微透镜(1a)。 此外,光检测单元(3a)被分成多个区域,并且在每个分割区域中设置滤色器(例如,原色滤色器或互补滤色器)。
    • 4. 发明申请
    • COMPOUND-EYE IMAGING DEVICE
    • 化合物成像装置
    • US20090225203A1
    • 2009-09-10
    • US12395971
    • 2009-03-02
    • Jun TanidaRyoichi HorisakiTakashi ToyodaYoshizumi NakaoYasuo Masaki
    • Jun TanidaRyoichi HorisakiTakashi ToyodaYoshizumi NakaoYasuo Masaki
    • H04N5/225
    • H04N5/2254G02B3/0056H04N5/3415
    • A compound-eye imaging device comprises an imaging device body having 9 optical lenses and a solid-state imaging element for imaging unit images formed by the optical lenses. Assuming that the combination of each of the optical lenses with a corresponding divided area of the solid-state imaging element to image each of the corresponding unit images is an imaging unit, thereby forming multiple imaging units, the respective imaging units have randomly different optical imaging conditions. For example, the focal lengths of the 9 optical lenses are set to have random values in which the optical lenses are arranged to have random distances between adjacent ones thereof in a direction parallel to the major surface of the solid-state imaging element. This compound-eye imaging device substantially prevents unit images formed by respective imaging units from being the same, making it possible to easily increase the definition of a reconstructed image.
    • 复眼成像装置包括具有9个光学透镜的成像装置主体和用于对由光学透镜形成的单元图像进行成像的固态成像元件。 假设每个光学透镜与固态成像元件的对应的分割区域的组合以对相应的单位图像进行成像,则成像单元,从而形成多个成像单元,各个成像单元具有随机地不同的光学成像 条件。 例如,9个光学透镜的焦距被设定为具有随机值,其中光学透镜被布置成在与固态成像元件的主表面平行的方向上具有相邻光学透镜之间的随机距离。 该复眼成像装置基本上防止由各个成像单元形成的单位图像相同,使得可以容易地增加重建图像的清晰度。
    • 5. 发明申请
    • Optical Condition Design Method for a Compound-Eye Imaging Device
    • 复合眼成像装置的光学条件设计方法
    • US20100053600A1
    • 2010-03-04
    • US12551088
    • 2009-08-31
    • Jun TanidaRyoichi HorisakiYoshizumi NakaoTakashi ToyodaYasuo Masaki
    • Jun TanidaRyoichi HorisakiYoshizumi NakaoTakashi ToyodaYasuo Masaki
    • G01B9/00
    • H04N5/2259H01L27/14625H01L27/14685H04N5/2254H04N5/349
    • An imaginary object plane is set in front of an imaging device body (plane setting step). A part of optical conditions of optical lenses are changed as variables, and positions of points (pixel observation points) on the imaginary object plane where lights coming from pixels of a solid-state imaging element and back-projected through the optical lenses are calculated (pixel observation point calculating step). The dispersion in position of the calculated pixel observation points is evaluated (evaluating step). Finally, a set of values of the variables giving maximum evaluated dispersion of the calculated pixel observation points is determined as optimum optical condition of the optical lenses (condition determining step). This reduces the number of pixels which image the same portions of the target object, making it possible to reduce portions of the same image information in multiple unit images, and to stably obtain a reconstructed image having a high definition.
    • 将虚拟物平面设置在成像装置主体的前方(平面设置步骤)。 光学透镜的光学条件的一部分作为变量而变化,并且在计算出来自固态成像元件的像素并通过光学透镜反投影的光的虚拟物面上的点(像素观察点)的位置( 像素观察点计算步骤)。 评估计算出的像素观察点的位置偏差(评价步骤)。 最后,将给出计算出的像素观察点的最大评估色散的变量的值的集合确定为光学透镜的最佳光学条件(条件确定步骤)。 这减少了对目标对象的相同部分进行成像的像素数量,使得可以减少多个单位图像中的相同图像信息的部分,并且稳定地获得具有高清晰度的重建图像。
    • 6. 发明授权
    • Apparatus and method for image configuring
    • 图像配置的装置和方法
    • US07657122B2
    • 2010-02-02
    • US10596137
    • 2004-12-01
    • Jun TanidaKouichi Nitta
    • Jun TanidaKouichi Nitta
    • G06K9/32G06K9/36
    • G06T3/40H04N5/2254H04N5/335
    • Using image data on a plurality of reduced object images to calculate a shift amount in regard to the gap of relative positions between the reduced object images by a correlation calculation between the reduced object images. A conversion equation is obtained from the shift amount for geometric projection process from the object image to each of the reduced object images. Initial image data on a single object image is generated using image data on the plurality of reduced object images. The above are used to estimate images of each of the reduced object images. A difference between the estimated image of the reduced object images and the reduced object images is projected in the reverse process of the geometric projection process, updating the image data on the single object image. The processes are repeated until the difference satisfies a predetermined condition and a high resolution object image is outputted.
    • 使用多个缩小对象图像上的图像数据,通过缩小对象图像之间的相关计算来计算关于缩小对象图像之间的相对位置的间隙的偏移量。 从对象图像到每个缩小对象图像的几何投影处理的偏移量获得转换方程。 使用多个缩小对象图像上的图像数据来生成单个对象图像上的初始图像数据。 上述用于估计每个缩小的对象图像的图像。 在几何投影处理的相反过程中投影缩小对象图像的估计图像和缩小对象图像之间的差异,更新单个对象图像上的图像数据。 重复这些处理,直到差异满足预定条件并输出高分辨率物体图像。
    • 7. 发明申请
    • Three-Dimensional Object Imaging Device
    • 三维物体成像装置
    • US20080247638A1
    • 2008-10-09
    • US12055762
    • 2008-03-26
    • Jun TanidaTakashi ToyodaYoshizumi NakaoYasuo Masaki
    • Jun TanidaTakashi ToyodaYoshizumi NakaoYasuo Masaki
    • G06T15/00
    • G06T7/557
    • A three-dimensional object imaging device comprises a compound-eye imaging unit and an image reconstructing unit for reconstructing an image of a three-dimensional object based on multiple unit images captured by the imaging unit. Based on the unit images obtained by the imaging unit, the image reconstructing unit calculates a distance (hereafter “pixel distance”) between the object and the imaging unit for each pixel forming the unit images, and rearranges the unit images pixel-by-pixel on a plane at the pixel distance to create a reconstructed image. Preferably, the image reconstructing unit sums a high-frequency component reconstructed image created from the multiple unit images with a lower noise low-frequency component unit image selected from low-frequency component unit images created from the multiple unit images so as to form a reconstructed image of the three-dimensional object. This makes it possible to obtain a reconstructed image with high definition easily by a simple process.
    • 一种三维物体摄像装置,其特征在于,具备:复眼图像单元和图像重构单元,用于基于由所述摄像单元拍摄的多个单位图像来重构三维物体的图像。 基于由成像单元获得的单位图像,图像重建单元针对形成单位图像的每个像素计算对象和成像单元之间的距离(以下称为“像素距离”),并且逐个像素地重新排列单位图像 在像素距离的平面上创建重建图像。 优选地,图像重建单元将从多个单位图像创建的高频分量重构图像与从多个单位图像创建的低频分量单元图像中选择的较低噪声低频分量单元图像相加,以形成重构的 三维物体的图像。 这使得可以通过简单的过程容易地获得具有高清晰度的重建图像。
    • 8. 发明授权
    • Compound-eye imaging device
    • 复眼成像装置
    • US08237841B2
    • 2012-08-07
    • US12395971
    • 2009-03-02
    • Jun TanidaRyoichi HorisakiTakashi ToyodaYoshizumi NakaoYasuo Masaki
    • Jun TanidaRyoichi HorisakiTakashi ToyodaYoshizumi NakaoYasuo Masaki
    • H04N5/225G02B13/16
    • H04N5/2254G02B3/0056H04N5/3415
    • A compound-eye imaging device comprises an imaging device body having 9 optical lenses and a solid-state imaging element for imaging unit images formed by the optical lenses. Assuming that the combination of each of the optical lenses with a corresponding divided area of the solid-state imaging element to image each of the corresponding unit images is an imaging unit, thereby forming multiple imaging units, the respective imaging units have randomly different optical imaging conditions. For example, the focal lengths of the 9 optical lenses are set to have random values in which the optical lenses are arranged to have random distances between adjacent ones thereof in a direction parallel to the major surface of the solid-state imaging element. This compound-eye imaging device substantially prevents unit images formed by respective imaging units from being the same, making it possible to easily increase the definition of a reconstructed image.
    • 复眼成像装置包括具有9个光学透镜的成像装置主体和用于对由光学透镜形成的单元图像进行成像的固态成像元件。 假设每个光学透镜与固态成像元件的对应的分割区域的组合以对相应的单位图像进行成像,则成像单元,从而形成多个成像单元,各个成像单元具有随机地不同的光学成像 条件。 例如,9个光学透镜的焦距被设定为具有随机值,其中光学透镜被布置成在与固态成像元件的主表面平行的方向上具有相邻光学透镜之间的随机距离。 该复眼成像装置基本上防止由各个成像单元形成的单位图像相同,使得可以容易地增加重建图像的清晰度。
    • 9. 发明授权
    • Optical condition design method for a compound-eye imaging device
    • 复眼成像装置的光学条件设计方法
    • US08115156B2
    • 2012-02-14
    • US12551088
    • 2009-08-31
    • Jun TanidaRyoichi HorisakiYoshizumi NakaoTakashi ToyodaYasuo Masaki
    • Jun TanidaRyoichi HorisakiYoshizumi NakaoTakashi ToyodaYasuo Masaki
    • H01L27/00
    • H04N5/2259H01L27/14625H01L27/14685H04N5/2254H04N5/349
    • An imaginary object plane is set in front of an imaging device body (plane setting step). A part of optical conditions of optical lenses are changed as variables, and positions of points (pixel observation points) on the imaginary object plane where lights coming from pixels of a solid-state imaging element and back-projected through the optical lenses are calculated (pixel observation point calculating step). The dispersion in position of the calculated pixel observation points is evaluated (evaluating step). Finally, a set of values of the variables giving maximum evaluated dispersion of the calculated pixel observation points is determined as optimum optical condition of the optical lenses (condition determining step). This reduces the number of pixels which image the same portions of the target object, making it possible to reduce portions of the same image information in multiple unit images, and to stably obtain a reconstructed image having a high definition.
    • 将虚拟物平面设置在成像装置主体的前方(平面设置步骤)。 光学透镜的光学条件的一部分作为变量而变化,并且在计算出来自固态成像元件的像素并通过光学透镜反投影的光的虚拟物面上的点(像素观察点)的位置( 像素观察点计算步骤)。 评估计算出的像素观察点的位置偏差(评价步骤)。 最后,将给出计算出的像素观察点的最大评估色散的变量的值的集合确定为光学透镜的最佳光学条件(条件确定步骤)。 这减少了对目标对象的相同部分进行成像的像素数量,从而可以减少多个单位图像中相同图像信息的部分,并且稳定地获得具有高清晰度的重建图像。
    • 10. 发明申请
    • Apparatus and method for image configuring
    • 图像配置的装置和方法
    • US20070160310A1
    • 2007-07-12
    • US10596137
    • 2004-12-01
    • Jun TanidaKouichi Nitta
    • Jun TanidaKouichi Nitta
    • G06K9/36
    • G06T3/40H04N5/2254H04N5/335
    • Using image data on a plurality of reduced object images to calculate a shift amount in regard to the gap of relative positions between the reduced object images by a correlation calculation between the reduced object images. A conversion equation is obtained from the shift amount for geometric projection process from the object image to each of the reduced object images. Initial image data on a single object image is generated using image data on the plurality of reduced object images. This and the aforementioned conversion equation, are used to estimate images of each of the reduced object images. A difference between the estimated image of each of the reduced object images and each of the reduced object images is projected in the reverse process of the aforementioned geometric projection process, to update the image data on the single object image. The processes are repeated until the difference satisfies a predetermined condition and a high resolution object image is outputted.
    • 使用多个缩小对象图像上的图像数据,通过缩小对象图像之间的相关计算来计算关于缩小对象图像之间的相对位置的间隙的偏移量。 从对象图像到每个缩小对象图像的几何投影处理的偏移量获得转换方程。 使用多个缩小对象图像上的图像数据来生成单个对象图像上的初始图像数据。 该和上述转换方程用于估计每个缩小对象图像的图像。 在上述几何投影处理的相反处理中投影每个缩小对象图像和每个缩小对象图像的估计图像之间的差异,以更新单个对象图像上的图像数据。 重复这些处理,直到差异满足预定条件并输出高分辨率物体图像。