会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 5. 发明申请
    • Fuel cell having patterned solid proton conducting electrolytes
    • 具有图案化固体质子传导电解质的燃料电池
    • US20080003485A1
    • 2008-01-03
    • US11479737
    • 2006-06-30
    • Ramkumar KrishnanWilliam J. DauksherChowdary R. Koripella
    • Ramkumar KrishnanWilliam J. DauksherChowdary R. Koripella
    • H01M4/86H01M8/10B05D5/12H01M4/88
    • H01M4/8885H01M4/8605H01M4/98H01M8/1006H01M8/1023H01M8/1039H01M8/1076Y02P70/56
    • A method is provided for patterning a solid proton conducting electrolyte (22, 60) for a micro fuel cell. The method comprises patterning a first side (30, 63) of a solid proton conducting electrolyte (22, 60) to increase the surface area, coating the patterned first side (22, 60) with an electrocatalyst (33, 66), providing a first electrical conductor (20) to the first side (22, 60), and providing a second electrical conductor (15, 16) to a second side (19) of the solid proton conducting electrolyte (22, 60) opposed to the first side (22, 60). One exemplary embodiment comprises depositing a solid proton conducting electrolyte (60) over a substrate (12), patterning the solid proton conducting electrolyte (60) to form a plurality of pedestals (28), each pedestal (28) having an anode side adjacent a anode region (42) and a cathode side adjacent a cathode region (43), coating the anode (42) and cathode (43) sides with an electrocatalyst (33), providing a first electrical conductor (15, 16) to the anode side (42); and providing a second electrical conductor (20) to the cathode side (43).
    • 提供了用于图案化用于微型燃料电池的固体质子传导电解质(22,60)的方法。 该方法包括图案化固体质子传导电解质(22,60)的第一侧(30,63)以增加表面积,用电催化剂(33,66)涂覆图案化的第一侧(22,60),从而提供 将第一电导体(20)连接到第一侧(22,60),并且向与第一侧相对的固体质子传导电解质(22,60)的第二侧(19)提供第二电导体(15,16) (22,60)。 一个示例性实施例包括在基板(12)上沉积固体质子传导电解质(60),图案化固体质子传导电解质(60)以形成多个基座(28),每个基座(28)具有邻近的阳极侧 阳极区域(42)和与阴极区域(43)相邻的阴极侧,用电极催化剂(33)涂覆阳极(42)和阴极(43)侧,向阳极侧提供第一电导体(15,16) (42); 以及向阴极侧(43)提供第二电导体(20)。
    • 7. 发明授权
    • Method for forming a micro fuel cell
    • 微型燃料电池的形成方法
    • US07776386B2
    • 2010-08-17
    • US11669712
    • 2007-01-31
    • Chowdary R. KoripellaKurt W. EisenbeiserRamkumar Krishnan
    • Chowdary R. KoripellaKurt W. EisenbeiserRamkumar Krishnan
    • H01M4/88H01M8/02H01M8/10
    • H01M8/1097H01M8/1286H01M8/2404H01M8/241H01M8/2418Y10T29/49108
    • A method is provided for fabricating an integrated micro fuel cell that derives power from a three-dimensional fuel/oxidant interchange having increased surface area and that is positioned on a second substrate that may be either porous or flexible with gas access holes, thereby avoiding precise alignment requirements of the openings providing fuel thereto. The method comprises forming on a first substrate, a plurality of pedestals including an anode and a cathode each comprising a porous metal; positioning an electrolyte between the anode and the cathode; and forming first metal contacts on the anode and cathode. The first substrate is removed and a second substrate is positioned against the fuel cell wherein the first metal contacts are selectively positioned to make electrical contact with second metal contacts on the second substrate.
    • 提供了一种用于制造集成的微型燃料电池的方法,其从具有增加的表面积的三维燃料/氧化剂交换器导出功率,并且位于第二基板上,该第二基板可以是具有气体进入孔的多孔或柔性的,从而避免精确 对其提供燃料的开口的对准要求。 该方法包括在第一基板上形成多个基座,包括阳极和阴极,每个基座包括多孔金属; 在阳极和阴极之间定位电解质; 并在阳极和阴极上形成第一金属接触。 去除第一衬底,并且第二衬底抵靠燃料电池定位,其中第一金属触点被选择性地定位成与第二衬底上的第二金属触点电接触。
    • 8. 发明申请
    • Method for forming a micro fuel cell
    • 微型燃料电池的形成方法
    • US20080118815A1
    • 2008-05-22
    • US11604035
    • 2006-11-20
    • John J. D'UrsoChowdary R. Koripella
    • John J. D'UrsoChowdary R. Koripella
    • H01M4/86B01J19/08H01M8/02
    • H01M8/1097H01M8/0232H01M8/1004H01M8/1023H01M8/1041H01M8/1048H01M2300/0045Y10T29/49108
    • A method is provided for fabricating a fuel cell wherein corrosion of metal diffusion layers or catalysts supports is avoided. The method comprises forming first and second electrical conductors (22, 42) accessible at a surface of a substrate (12). The substrate (12) is etched to provide a channel (34, 36), and a multi-metal layer (82) is deposited on the surface of the substrate (12). At least one metal is etched from the multi-metal layer (82) forming a porous metal layer therefrom. A portion of the porous metal layer is etched resulting in an anode portion (89) aligned with the channel (34, 36) and coupled to the first electrical conductor (22), and a cathode portion (90) coupled to the second electrical conductor (42) and separated from the anode portion by a cavity (91). A first bi-continuous material (97) is formed over the porous metal layer (82) within at least one of the anode (89) and oxidant (90) portions. An electrocatalyst (94) is formed over the bi-continous material (97), the cavity (91) is filled with an electrolyte; and the center anode portion (89) and the cavity (91) are covered with a capping layer (98).
    • 提供了一种用于制造燃料电池的方法,其中避免了金属扩散层或催化剂载体的腐蚀。 该方法包括形成可在衬底(12)的表面处接近的第一和第二电导体(22,42)。 蚀刻衬底(12)以提供通道(34,36),并且在衬底(12)的表面上沉积多金属层(82)。 从多金属层(82)蚀刻至少一种金属,从而形成多孔金属层。 多孔金属层的一部分被蚀刻,导致阳极部分(89)与沟道(34,36)对齐并且耦合到第一电导体(22),并且阴极部分(90)耦合到第二电导体 (42),并且通过空腔(91)与阳极部分分离。 第一双连续材料(97)在阳极(89)和氧化剂(90)部分中的至少一个内形成在多孔金属层(82)上。 在双连续材料(97)上形成电催化剂(94),空腔(91)填充有电解质; 并且中心阳极部分(89)和空腔(91)被覆盖层(98)覆盖。
    • 9. 发明授权
    • Calorimetric hydrocarbon gas sensor
    • 量热烃气体传感器
    • US5989398A
    • 1999-11-23
    • US970837
    • 1997-11-14
    • Daniel A. YoungAdam MoyaChowdary R. KoripellaJeff NaberNeil AdamsCraig MarkyvechAdam Miller
    • Daniel A. YoungAdam MoyaChowdary R. KoripellaJeff NaberNeil AdamsCraig MarkyvechAdam Miller
    • G01N25/30G01N25/36G01N27/16G01N27/419G01N27/26
    • G01N27/16G01N25/30G01N27/419
    • A calorimetric hydrocarbon gas sensor (10) includes an electrochemical oxygen pump (18), a sensing element (12), and a multi-layered substrate (26) separating the sensing element (12) from the electrochemical oxygen pump (18). The multi-layered substrate (26) includes a plurality of overlying insulating layers, in which at least one intermediate layer (60) supports a first primary heater (58), and in which another intermediate layer (52) supports a temperature compensation heaters (50a, 50b). The primary heater (58) functions to maintain the calorimetric hydrocarbon gas sensor (10) at a constant, elevated temperature, while the active compensation heater (50a) functions to maintain substantially equal temperatures as determined by the thermometers (46a, 46b) located on an intermediate layer (48) overlying the compensation heaters (50a, 50b). Control circuitry is integrated with power measurement circuitry to measure differences in the heat produced by the compensation heater (50a) and the thermometer (46a) in an active region (100), and the heat produced by the compensation heater (50b) and the thermometer (46b) in a reference region (102).
    • 量热烃气体传感器(10)包括电化学氧气泵(18),感测元件(12)和将感测元件(12)与电化学氧气泵(18)分开的多层衬底(26)。 多层基板(26)包括多个上覆绝缘层,其中至少一个中间层(60)支撑第一主加热器(58),并且其中另一中间层(52)支撑温度补偿加热器 50a,50b)。 主加热器(58)用于将量热烃气体传感器(10)保持在恒定的升高的温度,而有源补偿加热器(50a)用于维持基本上相同的温度,由温度计(46a,46b) 覆盖补偿加热器(50a,50b)的中间层(48)。 控制电路与功率测量电路集成,以测量补偿加热器(50a)和活动区域(100)中的温度计(46a)产生的热量的差异,以及补偿加热器(50b)和温度计 (46b)在参考区域(102)中。
    • 10. 发明申请
    • METHOD FOR FORMING A MICRO FUEL CELL
    • 形成微型燃料电池的方法
    • US20080178461A1
    • 2008-07-31
    • US11669712
    • 2007-01-31
    • Chowdary R. KoripellaKurt W. EisenbeiserRamkumar Krishnan
    • Chowdary R. KoripellaKurt W. EisenbeiserRamkumar Krishnan
    • H01M6/00
    • H01M8/1097H01M8/1286H01M8/2404H01M8/241H01M8/2418Y10T29/49108
    • A method is provided for fabricating an integrated micro fuel cell (50) that derives power from a three-dimensional fuel/oxidant interchange having increased surface area and that is positioned on a second substrate (60) that may be either porous or flexible with gas access holes, thereby avoiding precise alignment requirements of the openings providing fuel thereto. The method comprises forming a fuel cell (51) on a second substrate (12), wherein forming the fuel cell (51) comprises forming, on the substrate (12), a plurality of pedestals (48) including an anode (47) and a cathode (49) each comprising a porous metal (34); positioning an electrolyte (46) between the anode (47) and the cathode (49); and forming first metal contacts (52, 54) on the anode (47) and cathode (49). The fuel cell (51) is then removed from the rigid substrate (12). A second substrate (60) is positioned against the fuel cell (51) wherein the first (52, 54) and second (64) metal contacts are selectively positioned to make electrical contact with second metal contacts on the second substrate.
    • 提供了一种用于制造集成的微型燃料电池(50)的方法,其从具有增加的表面积的三维燃料/氧化剂交换器获得功率,并且位于第二衬底(60)上,所述第二衬底(60)可以是气体多孔的或柔性的 进入孔,从而避免了向其提供燃料的开口的精确对准要求。 该方法包括在第二基板(12)上形成燃料电池(51),其中形成燃料电池(51)包括在基板(12)上形成多个基座(48),其包括阳极(47)和 每个包括多孔金属(34)的阴极(49); 在阳极(47)和阴极(49)之间定位电解质(46); 以及在阳极(47)和阴极(49)上形成第一金属接触(52,54)。 然后将燃料电池(51)从刚性基板(12)移除。 第二基板(60)抵靠燃料电池(51)定位,其中第一(52,54)和第二(64)金属触点被选择性地定位成与第二基板上的第二金属触点电接触。