会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • ROTARY FLUID PROCESSING SYSTEMS AND ASSOCIATED METHODS
    • 旋转流体加工系统及相关方法
    • US20120152116A1
    • 2012-06-21
    • US12970865
    • 2010-12-16
    • John A. BarclayTadeusz SzymanskiLenard J. StoltmanKathryn Oseen-SendaHunter A. Chumbley
    • John A. BarclayTadeusz SzymanskiLenard J. StoltmanKathryn Oseen-SendaHunter A. Chumbley
    • B01D53/08
    • B01D53/06B01D53/0438B01D2253/108B01D2256/245B01D2257/304B01D2257/504B01D2257/80B01D2259/40088B01D2259/4009B01D2259/65C07C7/12F28F9/26Y02C10/08Y02C20/20Y10T29/4935
    • Rotary fluid processing systems and associated methods are disclosed. A purification system in accordance with the particular embodiment includes a rotatable adsorbent-containing heat/mass transfer element that is generally symmetric about a rotation axis, and includes multiple radial flow paths oriented transverse to the rotation axis and multiple axial flow paths oriented transverse to the radial flow paths. The axial flow paths and radial flow paths are in thermal communication with each other, and are generally isolated from fluid communication with each other at the heat transfer element. Particular embodiments can further include a housing arrangement having multiple manifolds with individual manifolds having an entry port and an exit port, and with individual manifolds having different circumferential locations relative to the rotation axis. Still further embodiments can include a seal arrangement positioned between the heat transfer element and the housing arrangement to expose the radial flow paths, but not the axial flow paths, to the entry and exit ports of one of the manifolds, and expose the axial flow paths, but not the radial flow paths, to the entry and exit ports of another of the manifolds.
    • 公开了旋转流体处理系统和相关方法。 根据特定实施例的净化系统包括可旋转的含吸附剂的热传质元件,其大致对称于旋转轴线,并且包括横向于旋转轴线的多个径向流动路径和横向于该旋转轴线的多个轴向流动路径 径向流动路径。 轴向流动路径和径向流动路径彼此热连通,并且通常与传热元件处于彼此​​流体连通的隔离状态。 具体实施例还可以包括具有多个歧管的壳体装置,其中单个歧管具有入口和出口,并且具有相对于旋转轴线具有不同圆周位置的各个歧管。 另外的实施例可以包括定位在传热元件和壳体装置之间的密封装置,以将歧管中的一个的入口和出口露出径向流动路径而不是轴向流动路径,并且暴露轴向流动路径 而不是径向流动路径,而不是另一个歧管的入口和出口。
    • 2. 发明申请
    • CONVERSION OF ALGAE TO LIQUID METHANE, AND ASSOCIATED SYSTEMS AND METHODS
    • 液态甲烷的转化及相关系统及方法
    • US20130183705A1
    • 2013-07-18
    • US13584662
    • 2012-08-13
    • John A. BarclayDavid Haberman
    • John A. BarclayDavid Haberman
    • C12P5/02
    • C12P5/023A01G33/00C12M21/02C12M21/04C12M23/58C12N1/12Y02A40/88Y02E50/343
    • Systems and methods for converting algae to liquid methane are disclosed. The system in accordance with a particular embodiment includes an algae cultivator, an anaerobic digester operatively coupled to the algae cultivator to receive algae and produce biogas, and a biogas converter coupled to the anaerobic digester to receive the biogas and produce liquefied methane and thermal energy, at least a portion of the thermal energy resulting from a methane liquefaction process. The system can further include a thermal path between the biogas converter and at least one of the algae cultivator and the anaerobic digester. The system can still further include a controller coupled to the biogas converter and at least one of the algae cultivator and the anaerobic digester. The controller can be programmed with instructions that, when executed (e.g., based on measured variables of the system), direct the portion of thermal energy between the biogas converter and the algae cultivator and/or anaerobic digester.
    • 公开了将藻类转化为液体甲烷的系统和方法。 根据特定实施例的系统包括藻类耕耘机,可操作地耦合到藻类耕耘机以接收藻类并产生生物气体的厌氧消化器,以及耦合到厌氧消化器以接收沼气并产生液化甲烷和热能的生物气体转化器, 由甲烷液化过程产生的至少一部分热能。 该系统还可以包括生物气体转化器和至少一个藻类培养器和厌氧消化器之间的热路径。 该系统还可以包括耦合到沼气转化器和至少一个藻类培养器和厌氧消化器的控制器。 控制器可以用指令进行编程,当执行时(例如,基于系统的测量变量),指导生物气体转换器和藻类培养器和/或厌氧消化器之间的热能的一部分。
    • 3. 发明授权
    • Systems and methods for processing methane and other gases
    • 用于处理甲烷和其他气体的系统和方法
    • US07744677B2
    • 2010-06-29
    • US11754135
    • 2007-05-25
    • John A. BarclayMichael A. Barclay
    • John A. BarclayMichael A. Barclay
    • B01D53/04
    • B01D53/0462B01D2253/102B01D2253/104B01D2253/108B01D2256/24B01D2257/504B01D2258/05B01D2259/403B01D2259/416Y02C10/04Y02C10/08
    • Systems and methods for processing methane and other gases are disclosed. A representative method in accordance with one embodiment includes directing a first portion of a gas stream through a first adsorbent while exchanging heat between a second adsorbent and a third adsorbent. The method can further include directing a second portion of the gas stream through the third adsorbent while exchanging heat between the first and second adsorbents. The method can still further include directing a third portion of the gas stream through the second adsorbent while exchanging heat between the first and third adsorbents. In further particular aspects, the adsorbent can be used to remove carbon dioxide from a flow of methane. In other particular aspects, a heat exchange fluid that is not in direct contact with the adsorbents is used to transfer heat among the adsorbents.
    • 公开了用于处理甲烷和其它气体的系统和方法。 根据一个实施方案的代表性方法包括将气流的第一部分引导通过第一吸附剂,同时在第二吸附剂和第三吸附剂之间交换热量。 该方法还可以包括将气流的第二部分引导通过第三吸附剂,同时在第一和第二吸附剂之间交换热量。 该方法还可以包括在第一和第三吸附剂之间交换热量的同时引导气流的第三部分通过第二吸附剂。 在另外的特定方面,吸附剂可用于从甲烷流中除去二氧化碳。 在其它特定方面,不与吸附剂直接接触的热交换流体用于在吸附剂之间传递热量。
    • 4. 发明申请
    • CONVERSION OF AQUATIC PLANTS TO LIQUID METHANE, AND ASSOCIATED SYSTEMS AND METHODS
    • 水生植物转化为液体甲烷,以及相关系统和方法
    • US20120308989A1
    • 2012-12-06
    • US13344154
    • 2012-01-05
    • John A. BarclayDavid Haberman
    • John A. BarclayDavid Haberman
    • C12P5/02C12M1/38C12Q3/00C12M1/107C12M1/36
    • A01G33/00C12M21/04C12M43/08C12N1/12C12P5/023Y02E50/343Y02P20/129
    • Systems and methods for converting aquatic plants to liquid methane are disclosed. A representative system includes an aquatic plant cultivator, an anaerobic digester operatively coupled to the aquatic plant cultivator to receive aquatic plants and produce biogas, and a biogas converter coupled to the anaerobic digester to receive the biogas and produce liquefied methane and thermal energy, at least a portion of the thermal energy resulting from a methane liquefaction process. The system can further include a thermal path between the biogas converter and at least one of the aquatic plant cultivator and the anaerobic digester. A controller can be coupled to the biogas converter and the aquatic plant cultivator and/or the anaerobic digester. The controller can be programmed with instructions that, when executed (e.g., based on measured variables of the system), direct the portion of thermal energy between the biogas converter and the aquatic plant cultivator and/or anaerobic digester.
    • 公开了将水生植物转化为液态甲烷的系统和方法。 一个代表性的系统包括一个水生植物培养器,一个可操作地连接到水生植物耕作机以接收水生植物并生产沼气的厌氧消化器,以及一个与厌氧消化器相连接以接收沼气并产生液化甲烷和热能的生物气转化器,至少 由甲烷液化过程产生的热能的一部分。 该系统还可以包括生物气体转化器与至少一个水生植物培养器和厌氧消化器之间的热路径。 控制器可以耦合到沼气转化器和水生植物培养器和/或厌氧消化器。 控制器可以用指令编程,当执行(例如,基于系统的测量变量)时,将生物气体转化器和水生植物培养器和/或厌氧消化器之间的热能的一部分引导。
    • 7. 发明授权
    • Apparatus and method for purifying natural gas via cryogenic separation
    • 通过低温分离净化天然气的装置和方法
    • US6082133A
    • 2000-07-04
    • US245570
    • 1999-02-05
    • Michael A. BarclayThomas C. BrookJohn A. BarclayRaymond R. Tison
    • Michael A. BarclayThomas C. BrookJohn A. BarclayRaymond R. Tison
    • B01D53/00F25J1/02F25J3/06F25J1/00
    • F25J3/061B01D53/002F25J1/0022F25J1/004F25J1/0042F25J1/0052F25J1/0212F25J3/0635F25J3/067F25J2205/20F25J2210/66F25J2220/66F25J2230/30F25J2270/02F25J2270/12F25J2270/66F25J2280/30F25J2290/44Y02C10/12Y10S62/909
    • An apparatus for separating CO.sub.2 from a mixture of gases includes CO.sub.2 and a second gas, the apparatus includes an active heat exchanger and a regenerating heat exchanger. The active heat exchanger includes a heat exchange surface in contact with the mixture of gases. The mixture of gases is present in the active heat exchanger at a predetermined pressure which is chosen such that CO.sub.2 freezes on the heat exchange surface when the surface is cooled by a refrigerant having a temperature below that at which CO.sub.2 freezes at the predetermined pressure. The regenerating heat exchanger includes a heat exchange surface in contact with the refrigerant and also in contact with a layer of frozen CO.sub.2. The refrigerant enters the regenerating heat exchanger at a temperature above that at which the CO.sub.2 in the frozen layer of CO.sub.2 sublimates. The sublimation of the solid CO.sub.2 cools the refrigerant prior to the refrigerant being expanded through an expansion valve, which reduces the temperature of the refrigerant to a point below the freezing point of CO.sub.2 at the predetermined pressure. The refrigerant is re-compressed by a compressor after leaving the active heat exchanger. In the preferred embodiment of the present invention, the gaseous CO.sub.2 released by the regenerating heat exchanger is used to precool the incoming gas mixture. A second precooling heat exchanger precools the compressed refrigerant by providing thermal contact with the refrigerant leaving the active heat exchanger.
    • 用于从气体混合物中分离CO 2的装置包括CO 2和第二气体,该装置包括主动热交换器和再生热交换器。 活性热交换器包括与气体混合物接触的热交换表面。 气体的混合物以预定的压力存在于活性热交换器中,该预定压力被选择为使得当表面被低于在预定压力下CO 2冻结的制冷剂冷却时,CO 2在热交换表面上冻结。 再生热交换器包括与制冷剂接触并且与一层冷冻CO 2接触的热交换表面。 制冷剂在高于二氧化碳冷冻层中的二氧化碳升华的温度下进入再生热交换器。 固体二氧化碳的升华在制冷剂通过膨胀阀膨胀之前冷却制冷剂,从而将制冷剂的温度降低到低于预定压力下的CO 2凝固点。 在离开主动热交换器之后,制冷剂被压缩机重新压缩。 在本发明的优选实施例中,由再生热交换器释放的气态CO 2用于预冷进入的气体混合物。 第二预冷热交换器通过与离开活性热交换器的制冷剂的热接触来预先压缩压缩的制冷剂。