会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 5. 发明申请
    • DETERMINATION OF A SPATIAL GAIN DISTRIBUTION OF A SCINTILLATOR
    • 确定扫描仪空间增益分布
    • US20100051816A1
    • 2010-03-04
    • US12594959
    • 2008-04-09
    • Rudolph Maria SnoerenHeidrun SteinhauserNicolaas Jan NoordhoekMatthias Simon
    • Rudolph Maria SnoerenHeidrun SteinhauserNicolaas Jan NoordhoekMatthias Simon
    • G01T1/20
    • G01T1/2018G01T1/2928
    • A method for providing information about a spatial gain distribution of a scintillator for a primary radiation is provided which does not require the irradiation of the scintillator with the primary radiation. The method comprises the step of irradiating the scintillator with a secondary radiation for generating an image of a spatial secondary gain distribution of the scintillator for said second radiation. The spatial secondary gain distribution image corresponds to an image of the spatial primary gain distribution for the primary radiation. In an embodiment of the invention, i.e. in an X-rayimaging device where the primary radiation is X-rayradiation, the invention provides for an accurate calibration of the X-raydetector without irradiating the X-raydetector with X-rayradiation. Rather, irradiation with UV radiation as the secondary radiation provides the desired spatial secondary gain distribution image which can be used for calibration.
    • 提供了一种用于提供关于主辐射的闪烁体的空间增益分布的信息的方法,其不需要用初级辐射照射闪烁体。 该方法包括用二次辐射照射闪烁体的步骤,用于产生用于所述第二辐射的闪烁体的空间二次增益分布的图像。 空间二次增益分布图像对应于初级辐射的空间初级增益分布的图像。 在本发明的一个实施例中,即在主辐射为X射线照射的X射线成像装置中,本发明提供了X射线检测器的精确校准,而不用X射线照射X射线检测器。 相反,用UV辐射作为辅助辐射的照射提供了可用于校准的期望的空间二次增益分布图像。
    • 6. 发明申请
    • REDUCING TRAP EFFECTS IN A SCINTILLATOR BY APPLICATION OF SECONDARY RADIATION
    • 通过应用二次辐射降低扫描仪中的陷阱效应
    • US20100140484A1
    • 2010-06-10
    • US12594958
    • 2008-04-08
    • Rudolph M. SnoerenHeidrun SteinhauserNicolaas J. NoordhoekMatthias Simon
    • Rudolph M. SnoerenHeidrun SteinhauserNicolaas J. NoordhoekMatthias Simon
    • G01T1/20
    • G01T1/2018G01T1/20
    • According to an embodiment of the invention, a radiation detector device (10) for detecting a primary radiation (6) comprises a scintillator (12) which generates a converted primary radiation in response to incoming primary radiation (6) and a photo detector (14) for detecting the converted primary radiation. The radiation detector device (10) further comprises a secondary radiation source (20) for irradiating the scintillator (12) with a secondary radiation (22) which has a wavelength different from a wavelength of the first radiation (6) and which is capable of producing a spatially more uniform response of the scintillator (12) to primary radiation. In an embodiment of the invention, the radiation detector device (10) is an X-ray detector of an X-ray imaging apparatus where the primary radiation is X-ray radiation and the secondary radiation has a wavelength between 350 nm and 450 nm. According to an embodiment, the irradiation with the secondary radiation, e.g. UV radiation, produces a uniform gain distribution of the X-ray detector (10).
    • 根据本发明的实施例,用于检测初级辐射(6)的辐射检测器装置(10)包括闪烁体(12),其响应于入射的主辐射(6)和光检测器(14)产生转换的一次辐射 )用于检测转换的一次辐射。 辐射检测器装置(10)还包括用于用闪光体(12)照射具有与第一辐射(6)的波长不同的波长的次辐射(22)的次辐射源(20) 产生闪烁体(12)对初级辐射的空间上更均匀的响应。 在本发明的一个实施例中,辐射检测器装置(10)是X射线成像装置的X射线检测器,其中初级辐射是X射线辐射,二次辐射具有在350nm与450nm之间的波长。 根据一个实施例,用二次辐射的照射,例如, UV辐射,产生X射线检测器(10)的均匀增益分布。
    • 7. 发明授权
    • Display device and cathode ray tube
    • 显示装置和阴极射线管
    • US06844665B2
    • 2005-01-18
    • US10024740
    • 2001-12-19
    • Heidrun SteinhauserRonald Johannes Gelten
    • Heidrun SteinhauserRonald Johannes Gelten
    • H01J29/48H01J29/50
    • H01J29/503H01J2229/4813
    • A display device comprising a deflection unit and a cathode ray tube having an in-line electron gun. The electron gun comprises a main lens portion having means for generating a main lens field and an auxiliary field. Furthermore, the electron gun comprises a prefocusing lens portion having a first, a second and a third electrode for generating a prefocusing lens field. In operation, in a direction perpendicular to the in-line plane, the auxiliary field and the main lens cause the electron beam to leave the main lens substantially parallel to the in-line plane, whereby the diameter of the electron beam at a gap of the main lens at the anode side is smaller than or equal to the diameter of the aperture of the second electrode throughout the deflecton of the electron beam across the display screen. By virtue thereof, an improved picture reproduction can be obtained.
    • 一种显示装置,包括具有直列电子枪的偏转单元和阴极射线管。 电子枪包括具有用于产生主透镜场和辅助场的装置的主透镜部分。 此外,电子枪包括具有用于产生预聚焦透镜场的第一,第二和第三电极的预聚焦透镜部分。 在操作中,在垂直于在线平面的方向上,辅助场和主透镜使得电子束离开主透镜基本上平行于直线平面,由此电子束的直径在 阳极侧的主透镜小于或等于穿过显示屏的电子束的整个偏转中的第二电极的孔的直径。 由此,可以获得改进的图像再现。
    • 8. 发明授权
    • Optical scanner having symmetry about an oblique divider
    • 光学扫描仪具有对称性的斜分隔线
    • US5579298A
    • 1996-11-26
    • US607623
    • 1996-02-27
    • Willem G. OpheijJozef P. H. BenschopHeidrun Steinhauser
    • Willem G. OpheijJozef P. H. BenschopHeidrun Steinhauser
    • G11B7/09G02B26/10G06K7/10G11B7/13G11B7/135G11B7/00
    • G11B7/131G11B7/1353
    • A device for optically scanning an information plane (2) having tracks (5). Radiation supplied by a radiation source (7) is focused on the information plane by an objective system (8). The beam reflected by the information plane is incident on a dividing element, for example, a grating (12), which divides the beam into two halves along a dividing line (17). Two sub-gratings (15, 16) at both sides of the dividing line, respectively, each form a sub-beam from one half of the beam, which sub-beams are detected by a detection system (10), which produces detection signals therefrom. A focus error signal is generated from the detector signals. According to the invention, modulation of the focus error signal by the track structure will be minimal if the dividing line (17) is located at an angle between 15.degree. and 80.degree. to the direction of the tracks.
    • 一种用于光学扫描具有轨道(5)的信息平面(2)的装置。 由辐射源(7)提供的辐射由物镜系统(8)聚焦在信息平面上。 由信息平面反射的光束入射在分割元件上,例如光栅(12),该光栅将光束沿分割线(17)分成两半。 分割线两侧的两个子光栅(15,16)分别形成来自光束的一半的子光束,这些子光束由检测系统(10)检测,产生检测信号 由此。 从检测器信号产生聚焦误差信号。 根据本发明,如果分隔线(17)位于与轨迹方向成15°至80°的角度,则轨道结构对聚焦误差信号的调制将是最小的。