会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Guided self-assembly of block copolymer line structures for integrated circuit interconnects
    • 用于集成电路互连的嵌段共聚物线结构的引导自组装
    • US08309278B2
    • 2012-11-13
    • US12885051
    • 2010-09-17
    • Joel K. W. YangKarl K. BerggrenYeon Sik JungCaroline A. Ross
    • Joel K. W. YangKarl K. BerggrenYeon Sik JungCaroline A. Ross
    • G03F1/50H01L21/31H01L21/469
    • G03F7/40B81C1/00031B81C2201/0149B82Y10/00B82Y40/00G03F7/0002Y10T428/24669
    • Complex self-assembled patterns can be created using a sparse template and local changes to the shape or distribution of the posts of the template to direct pattern generation of block copolymer. The post spacing in the template is formed commensurate with the equilibrium periodicity of the block copolymer, which controls the orientation of the linear features. Further, the posts can be arranged such that the template occupies only a few percent of the area of the final self-assembled patterns. Local aperiodic features can be introduced by changing the period or motif of the lattice or by adding guiding posts. According to one embodiment, an array of carefully spaced and shaped posts, prepared by electron-beam patterning of an inorganic resist, can be used to template complex patterns in a cylindrical-morphology block copolymer. These complex self-assembled patterns can form a mask used in fabrication processes of arbitrary structures such as interconnect layouts.
    • 可以使用稀疏模板创建复杂的自组装图案,并且对模板的柱的形状或分布进行局部变化以引导嵌段共聚物的图案生成。 模板中的柱间距与嵌段共聚物的平衡周期相一致,嵌段共聚物控制线性特征的取向。 此外,柱可以被布置成使得模板仅占最终自组装图案的面积的百分之几。 可以通过改变晶格的周期或图案或添加引导柱来引入局部非周期特征。 根据一个实施例,可以使用通过无机抗蚀剂的电子束图案化制备的仔细间隔和形状的柱的阵列来模制圆柱形形态嵌段共聚物中的复杂图案。 这些复杂的自组装图案可以形成用于诸如互连布局的任意结构的制造工艺中的掩模。
    • 2. 发明申请
    • GUIDED SELF-ASSEMBLY OF BLOCK COPOLYMER LINE STRUCTURES FOR INTEGRATED CIRCUIT INTERCONNECTS
    • 用于集成电路互连的块状共聚物线结构的指导自组装
    • US20120009390A1
    • 2012-01-12
    • US12885051
    • 2010-09-17
    • Joel K. W. YangKarl K. BerggrenYeon Sik JungCaroline A. Ross
    • Joel K. W. YangKarl K. BerggrenYeon Sik JungCaroline A. Ross
    • B32B5/00G03F7/20
    • G03F7/40B81C1/00031B81C2201/0149B82Y10/00B82Y40/00G03F7/0002Y10T428/24669
    • Complex self-assembled patterns can be created using a sparse template and local changes to the shape or distribution of the posts of the template to direct pattern generation of block copolymer. The post spacing in the template is formed commensurate with the equilibrium periodicity of the block copolymer, which controls the orientation of the linear features. Further, the posts can be arranged such that the template occupies only a few percent of the area of the final self-assembled patterns. Local aperiodic features can be introduced by changing the period or motif of the lattice or by adding guiding posts. According to one embodiment, an array of carefully spaced and shaped posts, prepared by electron-beam patterning of an inorganic resist, can be used to template complex patterns in a cylindrical-morphology block copolymer. These complex self-assembled patterns can form a mask used in fabrication processes of arbitrary structures such as interconnect layouts.
    • 可以使用稀疏模板创建复杂的自组装图案,并且对模板的柱的形状或分布进行局部变化以引导嵌段共聚物的图案生成。 模板中的柱间距与嵌段共聚物的平衡周期相一致,嵌段共聚物控制线性特征的取向。 此外,柱可以被布置成使得模板仅占最终自组装图案的面积的百分之几。 可以通过改变晶格的周期或图案或添加引导柱来引入局部非周期特征。 根据一个实施例,可以使用通过无机抗蚀剂的电子束图案化制备的仔细间隔和形状的柱的阵列来模制圆柱形形态嵌段共聚物中的复杂图案。 这些复杂的自组装图案可以形成用于诸如互连布局的任意结构的制造工艺中的掩模。
    • 5. 发明申请
    • Nanotemplate arbitrary-imprint lithography
    • 纳米模板任意刻印光刻
    • US20100078854A1
    • 2010-04-01
    • US11542474
    • 2006-10-03
    • Karl K. BerggrenStefan HarrerGiovanni A. SalvatoreJoel K. Yang
    • Karl K. BerggrenStefan HarrerGiovanni A. SalvatoreJoel K. Yang
    • B29C59/02
    • G03F7/0002B82Y10/00B82Y40/00
    • In a method for imprinting a layer of material, a nanotemplate is impressed into a material layer, and the nanotemplate is maintained impressed in the material layer until a geometric trench corresponding to geometry of the nanotemplate is formed in the layer, and the nanotemplate is then removed from the material layer. A nanotemplate geometric trench is repeatedly formed in the material layer by nanotemplate impressions in the layer, until a final desired imprint pattern is produced in the layer. Each nanotemplate geometric trench is characterized by an extent that is a fraction of an extent of the final desired imprint pattern. The material layer is maintained in a condition for accepting nanotemplate impressions continuously throughout the nanotemplate impression repetition.
    • 在用于压印材料层的方法中,将纳米模板压入材料层中,并且将纳米模板保持印在材料层中,直到在层中形成对应于纳米模板的几何形状的几何沟槽,然后将纳米模板 从材料层中移除。 通过层中的纳米模板印模在材料层中重复地形成纳米模板几何沟槽,直到在该层中产生最终期望的压印图案。 每个纳米模板几何沟槽的特征在于最终所需压印图案的程度的一部分。 材料层保持在整个纳米模板印象重复中连续地接纳纳米模板印象的条件。
    • 6. 发明授权
    • Nanowire-based detector
    • 基于纳米线的探测器
    • US08761848B2
    • 2014-06-24
    • US13117515
    • 2011-05-27
    • Karl K. BerggrenXiaolong HuDaniele Masciarelli
    • Karl K. BerggrenXiaolong HuDaniele Masciarelli
    • G01F23/24H01L39/24
    • G01J1/42H01L39/10H01L39/2416
    • Systems, articles, and methods are provided related to nanowire-based detectors, which can be used for light detection in, for example, single-photon detectors. In one aspect, a variety of detectors are provided, for example one including an electrically superconductive nanowire or nanowires constructed and arranged to interact with photons to produce a detectable signal. In another aspect, fabrication methods are provided, including techniques to precisely reproduce patterns in subsequently formed layers of material using a relatively small number of fabrication steps. By precisely reproducing patterns in multiple material layers, one can form electrically insulating materials and electrically conductive materials in shapes such that incoming photons are redirected toward a nearby electrically superconductive materials (e.g., electrically superconductive nanowire(s)). For example, one or more resonance structures (e.g., comprising an electrically insulating material), which can trap electromagnetic radiation within its boundaries, can be positioned proximate the nanowire(s). The resonance structure can include, at its boundaries, electrically conductive material positioned proximate the electrically superconductive nanowire such that light that would otherwise be transmitted through the sensor is redirected toward the nanowire(s) and detected. In addition, electrically conductive material can be positioned proximate the electrically superconductive nanowire (e.g. at the aperture of the resonant structure), such that light is directed by scattering from this structure into the nanowire.
    • 提供了与基于纳米线的检测器相关的系统,制品和方法,其可以用于例如单光子检测器中的光检测。 在一个方面,提供了各种检测器,例如包括电超导纳米线或纳米线构造和布置为与光子相互作用以产生可检测的信号的检测器。 在另一方面,提供了制造方法,包括使用相对较少数量的制造步骤精确再现随后形成的材料层中的图案的技术。 通过精确地再现多个材料层中的图案,可以形成电绝缘材料和导电材料的形状,使得入射光子被重定向到附近的电超导材料(例如,电超导纳米线)。 例如,可以将电磁辐射捕获在其边界内的一个或多个共振结构(例如,包括电绝缘材料)可以位于纳米线附近。 共振结构在其边界处可以包括位于电超导纳米线附近的导电材料,使得否则将通过传感器传输的光被重定向到纳米线并被检测。 此外,导电材料可以位于电超导纳米线附近(例如在谐振结构的孔处),使得光通过从该结构散射到纳米线中而被引导。
    • 10. 发明授权
    • Nanotemplate arbitrary-imprint lithography
    • 纳米模板任意刻印光刻
    • US08603381B2
    • 2013-12-10
    • US11542474
    • 2006-10-03
    • Karl K. BerggrenStefan HarrerGiovanni A. SalvatoreJoel K. Yang
    • Karl K. BerggrenStefan HarrerGiovanni A. SalvatoreJoel K. Yang
    • B28B3/00
    • G03F7/0002B82Y10/00B82Y40/00
    • In a method for imprinting a layer of material, a nanotemplate is impressed into a material layer, and the nanotemplate is maintained impressed in the material layer until a geometric trench corresponding to geometry of the nanotemplate is formed in the layer, and the nanotemplate is then removed from the material layer. A nanotemplate geometric trench is repeatedly formed in the material layer by nanotemplate impressions in the layer, until a final desired imprint pattern is produced in the layer. Each nanotemplate geometric trench is characterized by an extent that is a fraction of an extent of the final desired imprint pattern. The material layer is maintained in a condition for accepting nanotemplate impressions continuously throughout the nanotemplate impression repetition.
    • 在用于压印材料层的方法中,将纳米模板压入材料层中,并且将纳米模板保持印在材料层中,直到在层中形成对应于纳米模板的几何形状的几何沟槽,然后将纳米模板 从材料层中移除。 通过层中的纳米模板印模在材料层中重复地形成纳米模板几何沟槽,直到在该层中产生最终期望的压印图案。 每个纳米模板几何沟槽的特征在于最终所需压印图案的程度的一部分。 材料层保持在整个纳米模板印象重复中连续地接纳纳米模板印象的条件。