会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • LA(FE,SI)13-BASED MULTI-INTERSTITIAL ATOM HYDRIDE MAGNETIC REFRIGERATION MATERIAL WITH HIGH TEMPERATURE STABILITY AND LARGE MAGNETIC ENTROPY CHANGE AND PREPARATION METHOD THEREOF
    • LA(FE,SI)基于13的多相间极化氢气磁制冷材料具有高温稳定性和大的磁熵变化及其制备方法
    • US20130200293A1
    • 2013-08-08
    • US13514960
    • 2010-12-01
    • Jinliang ZhaoBaogen ShenFengxia HuJun ShenYangxian LiJirong SunHuayang GongJianxiong YinXiaohuan Wang
    • Jinliang ZhaoBaogen ShenFengxia HuJun ShenYangxian LiJirong SunHuayang GongJianxiong YinXiaohuan Wang
    • H01F1/01
    • H01F1/012C01B6/246
    • The invention discloses a La(Fe,Si)13-based hydride magnetic refrigeration material comprising multiple interstitial atoms and showing a high-temperature stability and a large magnetic entropy change and the method for preparing the same. By reintroducing interstitial hydrogen atoms into an interstitial master alloy La1-aRaFe13-bSibXc through a hydrogen absorption process, a compound with a chemical formula of La1-aRaFe13-bSibXcHd and a cubic NaZn13-type structure is prepared, wherein R is one or a combination of more than one rare-earth element, X is one or more C, B and the like or their combinations. A desired amount of hydrogen is obtained through a single hydrogen absorption process by means of controlling the hydrogen pressure, temperature and period in the process of hydrogen absorption. The compound can be stable under normal pressure, at a temperature of room temperature to 350° C., that is, the hydrogen atoms can still exist stably in the interstices. The Curie temperature of the compound can be adjusted continuously with a wide range of 180K to 360K by changing its composition. The magnetic entropy change that is more than 2 folds of that of Gd can be obtained around room temperature, and the magnetic hysteresis loss vanishes. In view of the above, this material is a desired magnetic refrigeration material applied at room temperature.
    • 本发明公开了一种包含多个间隙原子并显示高温稳定性和大的磁熵变的La(Fe,Si)13基氢化物磁致冷材料及其制备方法。 通过氢吸收法将间隙氢原子重新插入到间隙母合金La1-aRaFe13-bSibXc中,制备化学式为La1-aRaFe13-bSibXcHd的化合物和立方体NaZn13型结构,其中R是一个或组合 的多于一种的稀土元素,X是一个或多个C,B等或它们的组合。 通过控制氢气压力,氢吸收过程中的氢气压力,温度和时间,通过单一氢气吸收过程获得所需量的氢。 化合物在常压下,在室温至350℃的温度下可以是稳定的,即氢原子仍然可以稳定地存在于间隙中。 化合物的居里温度可以通过改变其组成而以180K至360K的宽范围连续调节。 可以在室温附近获得超过Gd的2倍以上的磁熵变,磁滞损耗消失。 鉴于上述,该材料是在室温下施加的期望的磁性制冷材料。
    • 2. 发明申请
    • BONDED La(Fe,Si)13-BASED MAGNETOCALORIC MATERIAL AND PREPARATION AND USE THEREOF
    • 粘结La(Fe,Si)13基磁性材料及其制备及其应用
    • US20150047371A1
    • 2015-02-19
    • US14359685
    • 2012-05-17
    • Fengxia HuLing ChenLifu BaoJing WangBaogen ShenJirong SunHuayang Gong
    • Fengxia HuLing ChenLifu BaoJing WangBaogen ShenJirong SunHuayang Gong
    • H01F1/01F25B21/00
    • H01F1/015F25B21/00F25B2321/002
    • Provided is a high-strength, bonded La(Fe, Si)13-based magnetocaloric material, as well as a preparation method and use thereof. The magnetocaloric material comprises magnetocaloric alloy particles and an adhesive agent, wherein the particle size of the magnetocaloric alloy particles is less than or equal to 800 μm and are bonded into a massive material by the adhesive agent; the magnetocaloric alloy particle has a NaZn13-type structure and is represented by a chemical formula of La1-xRx(Fe1-p-qCopMnq)13-ySiyAα, wherein R is one or more selected from elements cerium (Ce), praseodymium (Pr) and neodymium (Nd), A is one or more selected from elements C, H and B, x is in the range of 0≦x≦0.5, y is in the range of 0.8≦y≦2, p is in the range of 0≦p≦0.2, q is in the range of 0≦q≦0.2, α is in the range of 0≦α≦3.0. Using a bonding and thermosetting method, and by means of adjusting the forming pressure, thermosetting temperature, and thermosetting atmosphere, etc., a high-strength, bonded La(Fe, Si)13-based magnetocaloric material can be obtained, which overcomes the frangibility, the intrinsic property, of the magnetocaloric material. At the same time, the magnetic entropy change remains substantially the same, as compared with that before the bonding. The magnetic hysteresis loss declines as the forming pressure increases. And the effective refrigerating capacity, after the maximum loss being deducted, remains unchanged or increases.
    • 提供高强度的La(Fe,Si)13基磁热材料及其制备方法和用途。 磁热材料包括磁热合金颗粒和粘合剂,其中磁热合金颗粒的颗粒尺寸小于或等于800μm,并通过粘合剂粘合成块状材料; 磁热合金颗粒具有NaZn13型结构,并且由La1-xRx(Fe1-p-qCopMnq)13-ySiyAα的化学式表示,其中R是选自元素铈(Ce),镨(Pr) 和钕(Nd),A是选自元素C,H和B中的一种或多种,​​x在0和nlE的范围内; x和nlE; 0.5,y在0.8和nlE的范围内; y和nlE; 2,p在 0≦̸ p≦̸ 0.2,q在0和nlE的范围内; q≦̸ 0.2,α在0< nEE;α≦̸ 3.0的范围内。 使用粘结和热固化方法,通过调整成型压力,热固化温度和热固性气氛等,可以获得高强度的La(Fe,Si)13基磁热材料,克服了 易磁性,内在性质,磁热材料。 同时,与接合前相比,磁熵变保持基本相同。 随着成形压力的增加,磁滞损耗下降。 扣除最大损失后的有效制冷量保持不变或增加。
    • 4. 发明申请
    • LA(FE,SI)13-BASED MAGNETIC REFRIGERATION MATERIAL PREPARED FROM INDUSTRIAL-PURE MISCHMETAL AS THE RAW MATERIAL AND PREPARATION AND USE THEREOF
    • LA(FE,SI)13种基于制造工艺的磁性制冷材料作为原料,其制备和使用
    • US20140166159A1
    • 2014-06-19
    • US14232084
    • 2012-07-13
    • Ling ChenFengxia HuJing WangLifu BaoYingying ZhaoBaogen ShenJirong SunHuayang Gong
    • Ling ChenFengxia HuJing WangLifu BaoYingying ZhaoBaogen ShenJirong SunHuayang Gong
    • H01F1/01
    • The invention provides a La(Fe,Si)13-based magnetic refrigeration material prepared from industrial-pure mischmetal as the raw material, wherein the industrial-pure mischmetal is impurity-containing and naturally proportionated La—Ce—Pr—Nd mischmetal or LaCe alloy which, as the intermediate product during rare earth extraction, is extracted from light rare earth ore. The invention further provides the preparation method and use of the material, wherein the preparation method comprises the steps of smelting and annealing industrial-pure mischmetal as the raw material to prepare the La(Fe,Si)13-based magnetic refrigeration material. The presence of impurities in the industrial-pure mischmetal has no impact on the formation of the 1:13 phase, the presence of the first-order phase-transition property and metamagnetic behavior, and thus maintains the giant magnetocaloric effect of the magnetic refrigeration material. The preparation of La(Fe,Si)13-based magnetic refrigeration material from industrial-pure mischmetal reduces the dependency on high-purity elementary rare earth raw material; lowers the cost for manufacturing the material; and thus plays an important role in development of the magnetic refrigeration application of materials.
    • 本发明提供了一种以工业纯小米混合物为原料制备的La(Fe,Si)13系磁致冷材料,其中工业纯稀土金属含杂质,天然成比例的La-Ce-Pr-Nd混合稀土或LaCe 作为稀土提取中的中间产物,从轻稀土矿中提取出来的合金。 本发明还提供了该材料的制备方法和用途,其中制备方法包括冶炼和退火工业纯混合稀土作为原料制备La(Fe,Si)13基磁性制冷材料的步骤。 工业纯混合稀土中杂质的存在对1:13相的形成,一阶相变特性和反磁性行为的存在没有影响,从而保持了磁致冷材料的巨磁热效应 。 从工业纯小麦粉中制备La(Fe,Si)13磁性制冷材料减少了对高纯度稀土原料的依赖; 降低制造材料的成本; 从而在材料的磁致冷应用开发中起着重要的作用。
    • 5. 发明申请
    • MAGNETIC REFRIGERANT BED AND METHOD FOR MANUFACTURING THE SAME
    • 磁性制冰机及其制造方法
    • US20130283822A1
    • 2013-10-31
    • US13883714
    • 2011-10-24
    • Jun ShenJianfeng WuBaogen ShenMaoqiong GongWei Dai
    • Jun ShenJianfeng WuBaogen ShenMaoqiong GongWei Dai
    • F25B21/00
    • F25B21/00F25B2321/002F25B2500/01Y02B30/66Y10T29/49359
    • The present invention provides a magnetic refrigerant bed, which is a column composed of n magnetic refrigerant bed components, and these n magnetic refrigerant bed components are arranged in a descending order according to Curie temperatures or phase transition temperatures of the magnetic refrigeration materials used, wherein n=1-1000. The magnetic refrigerant bed components are flat sheets (1), straight wave-shaped sheets (2) or zigzag wave-shaped sheets (3) which can easily form a magnetic refrigerant bed with high specific surface area and flow channels of low resistance. And a method for manufacturing a magnetic refrigerant bed is also provided, which comprises the following steps: preparing magnetic refrigeration powder materials with Curie temperatures or phase transition temperatures in the operating temperature range of a magnetic refrigerator; and immersing the magnetic refrigeration powder materials into binder respectively; then loading the mixture into molds respectively and pressing the mixture into sheet magnetic refrigerant bed components; then arranging and assembling the obtained components in a descending order according to Curie temperatures or phase transition temperatures of the used magnetic refrigeration materials to obtain a columnar magnetic refrigerant bed. The magnetic refrigerant bed has advantages of large heat transfer specific surface area and small flow resistance of the refrigerant.
    • 本发明提供一种由n个磁性制冷剂床组分构成的柱的磁性制冷剂床,并且这些n个磁性制冷剂床组分按照所使用的磁性制冷材料的居里温度或相变温度按降序排列,其中 n = 1-1000。 磁性制冷剂床部件是能够容易地形成具有高比表面积的磁性制冷剂床和低阻力的流动通道的平板(1),直波形片(2)或之字形波片(3)。 还提供了一种用于制造磁性制冷剂床的方法,包括以下步骤:在磁性冰箱的工作温度范围内制备具有居里温度或相变温度的磁性制冷粉末材料; 并将磁性制冷粉末材料分别浸入粘合剂中; 然后分别将混合物装入模具中并将混合物压制成片状制冷剂床组分; 然后根据所使用的磁性制冷材料的居里温度或相变温度按降序布置和组装所获得的部件,以获得柱状磁性制冷剂床。 磁性制冷剂床具有传热比表面积大,制冷剂流动阻力小的优点。
    • 6. 发明申请
    • REFRIGERATING METHOD AND REFRIGERATING DEVICE WITH COMBINATOIN OF MAGNETIC REFRIGERATION AND REGENERATIVE GAS REFRIGERATION
    • 制冷方法和制冷装置与磁选制冷剂和再生气制冷机组合
    • US20130305742A1
    • 2013-11-21
    • US13994649
    • 2011-10-24
    • Jianfeng WuJun ShenWei DaiMaoqiong GongBaogen Shen
    • Jianfeng WuJun ShenWei DaiMaoqiong GongBaogen Shen
    • F25B21/00
    • F25B21/00F25B9/145F25B25/00F25B2321/0022Y02B30/66
    • The present invention provides a refrigeration method combining magnetic refrigeration and gas-based regenerative refrigeration, the method comprises: replacing part of or all of regenerators (2) in a gas-based regenerative refrigerator with magnetic regenerators (2), wherein part of or all of fillers in the magnetic regenerators (2) are magnetic refrigeration materials to form magnetic regenerators (2) with the same operating temperature ranges as that of the corresponding regenerators in the gas-based regenerative refrigerator; disposing the magnetic regenerators (2) respectively in magnet assemblies (4) for generating controllable and periodically-changing field strength, and performing coupling control on working sequence of the gas-base regenerative regenerator and magnetic field changing sequence of the magnet assemblies to realize combination of magnetic refrigeration and gas-based regenerative refrigeration. And an apparatus combining magnetic refrigeration and gas-based regenerative refrigeration is also provided, which comprises: a pressure wave generator (1), m regenerators (2), m phase difference adjusting mechanism (3), j magnet assemblies (4) for generating controllable and changeable field strength and a coupling control system (5), wherein m is an integer between 1 and 5, and j
    • 本发明提供一种结合磁性制冷和气体再生制冷的制冷方法,其特征在于,包括:在具有磁性再生器(2)的气体再生式制冷机中代替部分或全部再生器(2),其中部分或全部 在磁性再生器(2)中的填充剂是磁性制冷材料,以形成与气体再生式制冷机中相应的再生器相同的工作温度范围的磁性再生器(2) 将磁性再生器(2)分别设置在磁体组件(4)中,用于产生可控和周期性变化的场强,并对气体再生再生器的工作顺序和磁体组件的磁场变化顺序执行耦合控制,以实现组合 的磁性制冷和气体再生制冷。 还提供了一种组合磁制冷和气体再生制冷的装置,其包括:压力波发生器(1),m个再生器(2),m相差调节机构(3),用于产生的j个磁体组件 可控和可变的场强和耦合控制系统(5),其中m是1和5之间的整数,j <= m。