会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 5. 发明授权
    • Neural segmentation of an input signal and applications using simulated neurons, and a phase modulator
    • 输入信号的神经分割和使用模拟神经元的应用,以及相位调制器
    • US08473436B2
    • 2013-06-25
    • US12621243
    • 2009-11-18
    • Douglas A. MooreKristi H. TsukidaPaulo B. Ang
    • Douglas A. MooreKristi H. TsukidaPaulo B. Ang
    • G06E1/00
    • G10L17/18G10L15/16
    • Disclosed are systems, methods, and computer-program products for segmenting content of an input signal and applications thereof. In an embodiment, the system includes simulated neurons, a phase modulator, and an entity-identifier module. Each simulated neuron is connected to one or more other simulated neurons and is associated with an activity and a phase. The activity and the phase of each simulated neuron is set based on the activity and the phase of the one or more other simulated neurons connected to each simulated neuron. The phase modulator includes individual modulators, each configured to modulate the activity and the phase of each of the plurality of simulated neurons based on a modulation function. The entity-identifier module is configured to identify one or more distinct entities (e.g., objects, sound sources, etc.) included in the input signal based on the one or more distinct collections of simulated neurons that have substantially distinct phases.
    • 公开了用于分割输入信号的内容的系统,方法和计算机程序产品及其应用。 在一个实施例中,系统包括模拟神经元,相位调制器和实体标识符模块。 每个模拟神经元连接到一个或多个其他模拟神经元,并与活动和相位相关联。 基于与每个模拟神经元连接的一个或多个其他模拟神经元的活动和相位设置每个模拟神经元的活动和相位。 相位调制器包括单个调制器,每个调制器被配置为基于调制功能来调制多个模拟神经元中的每一个的活动和相位。 实体标识符模块被配置为基于具有基本上不同相位的模拟神经元的一个或多个不同集合来识别包括在输入信号中的一个或多个不同实体(例如,对象,声源等)。
    • 7. 发明授权
    • Non-contact optical distance and tactile sensing system and method
    • 非接触式光学距离和触觉感应系统及方法
    • US09120233B2
    • 2015-09-01
    • US13485691
    • 2012-05-31
    • Douglas A. Moore
    • Douglas A. Moore
    • B25J13/08B25J15/10
    • B25J13/08B25J13/084B25J13/086B25J15/10Y10S901/31Y10S901/33Y10S901/35Y10S901/46
    • The systems and methods are directed to mechanical arms and manipulators, and more particularly, to optical distance sensors in use for approach, grasping and manipulation. The system may include a manipulator having an arm and a multi fingered end-effector coupled to the distal end of the arm. The end-effector may include an optical proximity sensor configured to detect the distance to an object prior to contact with the object. The end-effector may include an optical proximity sensor configured detect a measurement of force applied to the object by the manipulator post contact with the object. The measurement of force may be a range of force measurements including a minimum, a maximum and a measurement between or within the minimum and the maximum.
    • 系统和方法涉及机械臂和操纵器,更具体地,涉及用于接近,抓握和操纵的光学距离传感器。 该系统可以包括操纵器,其具有联接到臂的远端的臂和多指末端执行器。 末端执行器可以包括配置成在与物体接触之前检测到物体的距离的光学接近传感器。 末端执行器可以包括光学接近传感器,其配置为检测通过与物体接触的操纵器施加到物体的力的测量。 力的测量可以是力测量的范围,包括在最小值和最大值之间或之内的最小值,最大值和测量值。
    • 9. 发明授权
    • Competitive BCM learning rule for identifying features
    • 用于识别特征的竞争性BCM学习规则
    • US09183494B2
    • 2015-11-10
    • US12853939
    • 2010-08-10
    • Douglas A. Moore
    • Douglas A. Moore
    • G06N3/08G06N3/10
    • G06N3/08G06N3/10
    • Disclosed are systems, apparatuses, and methods for implementing a competitive BCM learning rule used in a neural network. Such a method includes identifying a maximally responding neuron with respect to a feature of an input signal. The maximally responding neuron is the neuron in a group that has a response with respect to the feature of the input signal that is greater than a response of each other neuron in the group. Such a method also includes applying a learning rule to weaken the response of each other neuron with respect to the feature of the input signal. The learning rule may also strengthen the response of the maximally responding neuron with respect to the feature of the input signal.
    • 公开了用于实现在神经网络中使用的竞争性BCM学习规则的系统,装置和方法。 这种方法包括针对输入信号的特征识别最大响应的神经元。 最大响应的神经元是一组中具有对输入信号的特征的响应的组中的神经元,该响应大于组中彼此神经元的响应。 这种方法还包括应用学习规则来削弱彼此神经元相对于输入信号的特征的响应。 学习规则还可以加强对于输入信号特征的最大响应神经元的响应。