会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • RESISTIVE CROSS-POINT ARCHITECTURE FOR ROBUST DATA REPRESENTATION WITH ARBITRARY PRECISION
    • 用于精确数据表达的电阻式交叉点架构
    • US20160049195A1
    • 2016-02-18
    • US14824782
    • 2015-08-12
    • Shimeng YuYu CaoJae-sun SeoSarma VrudhulaJieping Ye
    • Shimeng YuYu CaoJae-sun SeoSarma VrudhulaJieping Ye
    • G11C13/00
    • G11C13/0026G11C5/06G11C13/0002G11C13/0028G11C13/003G11C13/004G11C13/0069G11C2213/74G11C2213/77G11C2213/79
    • This disclosure relates generally to resistive memory systems. The resistive memory systems may be utilized to implement neuro-inspired learning algorithms with full parallelism. In one embodiment, a resistive memory system includes a cross point resistive network and switchable paths. The cross point resistive network includes variable resistive elements and conductive lines. The conductive lines are coupled to the variable resistive elements such that the conductive lines and the variable resistive elements form the cross point resistive network. The switchable paths are connected to the conductive lines so that the switchable paths are operable to selectively interconnect groups of the conductive lines such that subsets of the variable resistive elements each provide a combined variable conductance. With multiple resistive elements in the subsets, process variations in the conductances of the resistive elements average out. As such, learning algorithms may be implemented with greater precision using the cross point resistive network.
    • 本公开一般涉及电阻式存储器系统。 电阻式存储器系统可用于实现具有完全并行性的神经启发式学习算法。 在一个实施例中,电阻式存储器系统包括交叉点电阻网络和可切换路径。 交叉点电阻网络包括可变电阻元件和导线。 导线耦合到可变电阻元件,使得导线和可变电阻元件形成交叉电阻网络。 可切换路径连接到导线,使得可切换路径可操作以选择性地互连导电线组,使得可变电阻元件的子集各自提供组合的可变电导。 在子集中具有多个电阻元件,电阻元件的电导的工艺变化平均。 因此,可以使用交叉点电阻网络以更高的精度来实现学习算法。
    • 2. 发明申请
    • NEUROMORPHIC COMPUTATIONAL SYSTEM(S) USING RESISTIVE SYNAPTIC DEVICES
    • 使用电阻同步装置的神经计算系统(S)
    • US20160336064A1
    • 2016-11-17
    • US15156113
    • 2016-05-16
    • Jae-sun SeoShimeng YuYu CaoSarma Vrudhula
    • Jae-sun SeoShimeng YuYu CaoSarma Vrudhula
    • G11C13/00G06N3/08
    • G06N3/088G06N3/0635G11C11/54G11C13/0002G11C13/0069
    • Neuromorphic computational circuitry is disclosed that includes a cross point resistive network and line control circuitry. The cross point resistive network includes variable resistive units. One set of the variable resistive units is configured to generate a correction line current on a conductive line while other sets of the variable resistive units generate resultant line currents on other conductive lines. The line control circuitry is configured to receive the line currents from the conductive lines and generate digital vector values. Each of the digital vector values is provided in accordance with a difference between the current level of a corresponding resultant line current and a current level of the correction line current. In this manner, the digital vector values are corrected by the current level of the correction line current in order to reduce errors resulting from finite on to off conductance state ratios.
    • 公开了包括交叉点电阻网络和线路控制电路的神经计算电路。 交叉点电阻网络包括可变电阻单元。 一组可变电阻单元被配置为在导线上产生校正线电流,而其他组的可变电阻单元在其它导线上产生合成线电流。 线路控制电路被配置为从导线接收线电流并产生数字矢量值。 根据对应的合成线电流的电流电平和校正线电流的电流电平之间的差,提供每个数字矢量值。 以这种方式,通过校正线电流的当前电平来校正数字矢量值,以便减少由有限导通到导通状态比率导致的误差。
    • 3. 发明授权
    • Resistive cross-point architecture for robust data representation with arbitrary precision
    • 用于具有任意精度的鲁棒数据表示的电阻式交叉点架构
    • US09466362B2
    • 2016-10-11
    • US14824782
    • 2015-08-12
    • Shimeng YuYu CaoJae-sun SeoSarma VrudhulaJieping Ye
    • Shimeng YuYu CaoJae-sun SeoSarma VrudhulaJieping Ye
    • G11C5/06G11C13/00
    • G11C13/0026G11C5/06G11C13/0002G11C13/0028G11C13/003G11C13/004G11C13/0069G11C2213/74G11C2213/77G11C2213/79
    • This disclosure relates generally to resistive memory systems. The resistive memory systems may be utilized to implement neuro-inspired learning algorithms with full parallelism. In one embodiment, a resistive memory system includes a cross point resistive network and switchable paths. The cross point resistive network includes variable resistive elements and conductive lines. The conductive lines are coupled to the variable resistive elements such that the conductive lines and the variable resistive elements form the cross point resistive network. The switchable paths are connected to the conductive lines so that the switchable paths are operable to selectively interconnect groups of the conductive lines such that subsets of the variable resistive elements each provide a combined variable conductance. With multiple resistive elements in the subsets, process variations in the conductances of the resistive elements average out. As such, learning algorithms may be implemented with greater precision using the cross point resistive network.
    • 本公开一般涉及电阻式存储器系统。 电阻式存储器系统可用于实现具有完全并行性的神经启发式学习算法。 在一个实施例中,电阻式存储器系统包括交叉点电阻网络和可切换路径。 交叉点电阻网络包括可变电阻元件和导线。 导线耦合到可变电阻元件,使得导线和可变电阻元件形成交叉电阻网络。 可切换路径连接到导线,使得可切换路径可操作以选择性地互连导电线组,使得可变电阻元件的子集各自提供组合的可变电导。 在子集中具有多个电阻元件,电阻元件的电导的工艺变化平均。 因此,可以使用交叉点电阻网络以更高的精度来实现学习算法。