会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Method of growing silicon single crystals
    • 生长硅单晶的方法
    • US5501172A
    • 1996-03-26
    • US395837
    • 1995-02-28
    • Toshinari MuraiEiichi IinoHideo AraiIzumi FusegawaHirotoshi Yamagishi
    • Toshinari MuraiEiichi IinoHideo AraiIzumi FusegawaHirotoshi Yamagishi
    • C30B15/00C30B15/20
    • C30B29/06C30B15/00
    • The present invention provides a method of growing silicon single crystals by the Czochralski method, wherein the strength of a neck may be increased so as to delete the risk of severance thereof in a simple and easy way without the use of mechanically complex devices and thereby growing of a single crystal of a larger diameter and heavy weight is made practically possible.The method comprises the steps of: a single crystal being so grown from a seed crystal that the diameter of said single crystal gets gradually narrower until the length of a seed taper reaches 2.5 to 15 times the sectional size of the seed crystal; the diameter of a long near-cylindrical neck following the seed taper being so regulated that said diameter may be 0.09 to 0.9 times the sectional size of the seed crystal and 2.5 mm as the smallest in diameter; the spread of the diameter fluctuation of the neck being so restricted as to be less than 1 mm; and the length of the neck being so controlled as to be kept within the range of 200 mm to 600 mm.
    • 本发明提供了通过切克劳斯基法生长硅单晶的方法,其中可以增加颈部的强度,以便在不使用机械复杂的装置的情况下以简单和容易的方式删除其分离的风险,从而增长 的大直径和重量的单晶实际上是可能的。 该方法包括以下步骤:从晶种生长单晶,使得单晶的直径逐渐变窄,直到晶种锥的长度达到晶种的截面尺寸的2.5至15倍; 种子锥度之后的长的近圆柱形颈部的直径被调节,使得所述直径可以是晶种的截面尺寸的0.09至0.9倍,并且直径最小为2.5mm; 颈部的直径波动的扩展被限制为小于1mm; 并且颈部的长度被控制在200mm至600mm的范围内。
    • 3. 发明授权
    • Silicon single crystal wafer having few crystal defects
    • 具有很少晶体缺陷的硅单晶晶片
    • US06348180B1
    • 2002-02-19
    • US09492001
    • 2000-01-26
    • Makoto IidaSatoshi SuzukiEiichi IinoMasanori KimuraShozo Muraoka
    • Makoto IidaSatoshi SuzukiEiichi IinoMasanori KimuraShozo Muraoka
    • C30B1520
    • C30B29/06C30B15/14C30B15/203
    • A method for producing a silicon single crystal in accordance with the Czochralski method. The single crystal is grown in an N2(V) region where a large amount of precipitated oxygen and which is located within an N region located outside an OSF ring region, or is grown in a region including the OSF ring region, N1(V) and N2(V) regions located inside and outside the OSF ring region, in a defect distribution chart which shows a defect distribution in which the horizontal axis represents a radial distance D (mm) from the center of the crystal and the vertical axis represents a value of F/G (mm2/° C.·min), where F is a pulling rate (mm/min) of the single crystal, and G is an average intra-crystal temperature gradient (° C./mm) along the pulling direction within a temperature range of the melting point of silicon to 1400° C. The method allows production of silicon single crystal wafers in which neither FPDs nor L/D defects exist on the wafer surface, and gettering capability stemming from oxygen precipitation is provided over the entire wafer surface, and silicon single crystal wafers wherein OSF nuclei exit but no OSF ring appears when the wafer is subjected to thermal oxidation treatment, neither FPDs nor L/D defects exist on the wafer surface, and gettering capability is provided over the entire wafer surface.
    • 根据Czochralski法生产硅单晶的方法。 单晶生长在大量析出氧并且位于OSF环外部的N区内的N2(V)区域中,或者在包括OSF环区域N1(V)的区域中生长, 和位于OSF环区域内外的N 2(V)区域的缺陷分布图,其表示水平轴表示与晶体中心的径向距离D(mm)的缺陷分布,纵轴表示 F / G的值(mm2 /℃·min),其中F是单晶的拉伸速率(mm / min),G是沿着单晶的平均晶体内温度梯度(°C / mm) 在硅熔点的温度范围内拉伸方向为1400℃。该方法允许生产晶片表面上不存在FPD和L / D缺陷的硅单晶晶片,并且提供由氧沉淀产生的吸杂能力 整个晶圆表面和硅单晶 当晶片进行热氧化处理时,在晶片表面上不存在FPD和L / D缺陷,并且在整个晶片表面上提供吸杂能力,其中OSF核离开但没有OSF环出现。
    • 4. 发明授权
    • Silicon single crystal wafer having few crystal defects, and method for
producing the same
    • 晶体缺陷少的硅单晶晶片及其制造方法
    • US6120599A
    • 2000-09-19
    • US454841
    • 1999-12-06
    • Makoto IidaEiichi IinoMasanori KimuraShozo Muraoka
    • Makoto IidaEiichi IinoMasanori KimuraShozo Muraoka
    • C30B15/00C30B15/20C30B29/06H01L21/02H01L21/208
    • C30B29/06C30B15/203C30B15/206
    • In a method for producing a silicon single crystal wafer, a silicon single crystal is grown in accordance with the Czochralski method such that the F/G value becomes 0.112-0.142 mm.sup.2 /.degree. C..multidot.min at the center of the crystal, where F is a pulling rate (mm/min) of the single crystal, and G is an average intra-crystal temperature gradient (.degree. C./mm) along the pulling direction within a temperature range of the melting point of silicon to 1400.degree. C. Additionally, the single crystal is pulled such that the interstitial oxygen concentration becomes less than 24 ppma, or the time required to pass through a temperature zone of 1050-850.degree. C. within the crystal is controlled to become 140 minutes or less. The method allows production of silicon single crystal wafers in which neither FPDs nor L/D defects exist on the wafer surface, which therefore has an extremely low defect density, and whose entire surface is usable.
    • 在制造硅单晶晶片的方法中,根据Czochralski法生长硅单晶,使得F / G值在晶体中心处为0.112-0.142mm 2 /℃×min,其中F为 单晶的拉伸速度(mm / min),G是在硅熔点至1400℃的温度范围内沿着牵引方向的平均晶体内温度梯度(DEG C./mm)。另外 拉伸单晶,使得间隙氧浓度变得小于24ppma,或者通过晶体内的1050-850℃的温度区所需的时间被控制为140分钟以下。 该方法允许生产其中晶片表面上不存在FPD和L / D缺陷的硅单晶晶片,因此具有极低的缺陷密度,并且其整个表面可用。
    • 5. 发明授权
    • Manufacturing method of single crystal and apparatus of manufacturing
the same
    • 单晶的制造方法及其制造方法
    • US5980630A
    • 1999-11-09
    • US81665
    • 1998-05-20
    • Eiichi IinoKiyotaka TakanoMasanori KimuraHirotoshi Yamagishi
    • Eiichi IinoKiyotaka TakanoMasanori KimuraHirotoshi Yamagishi
    • C30B15/00C30B15/20C30B15/30C30B29/06C30B30/04C30B35/00
    • C30B15/305Y10S117/917Y10T117/1068
    • In a single crystal manufacturing method by a horizontal magnetic field applied CZ method wherein coils are disposed interposing a crucible coaxially with each other, the coils constituting superconductive electromagnets of a magnetic field application apparatus and the silicon crystal is pulled from melt in the crucible while applying a horizontal magnetic field to the melt; an elavation apparatus capable of finely adjusting relative positions of the superconductive electromagnets and the crcucible in a vertical direction is disposed. The descent of a central portion Cm in a depth direction of the melt is canceled by elevating the crucible with the elevating apparatus, the descent being accompanied with proceeding of process of pulling the single crystal, thereby a coil central axis Cc of the superconductive electromagnets always passes through the central portion Cm or below this portion. Compared with the conventional HMCZ method, an uniformity of an intensity distribution of the magnetic field applied to the melt is increased so that a suppression effect on the melt convection all over the crucible is enhanced.
    • 在通过水平磁场施加的CZ方法的单晶制造方法中,其中线圈彼此同轴地布置坩埚,构成磁场施加装置的超导电磁体的线圈和硅晶体在施加时从坩埚中的熔体拉出 熔体的水平磁场; 设置能够精细地调整超导电磁体和坩埚在垂直方向上的相对位置的冲压装置。 通过用升降装置升高坩埚来消除熔体深度方向上的中心部分Cm的下降,伴随着牵引单晶的过程的下降,超导电磁体的线圈中心轴Cc总是 通过中心部分Cm或者低于该部分。 与传统的HMCZ方法相比,施加到熔体的磁场的强度分布的均匀性增加,从而增强了对整个坩埚的熔体对流的抑制效果。
    • 6. 发明授权
    • Method for producing silicon single crystal and production apparatus therefor, as well as single crystal and silicon wafer produced by the method
    • 制造硅单晶的方法及其制造装置,以及通过该方法制造的单晶硅片
    • US06423285B1
    • 2002-07-23
    • US09674858
    • 2000-11-07
    • Kirio ItoiEiichi IinoTohru IshizukaTomohiko OhtaIzumi Fusegawa
    • Kirio ItoiEiichi IinoTohru IshizukaTomohiko OhtaIzumi Fusegawa
    • C01B3326
    • C30B29/06C30B15/305C30B30/04Y10S117/917
    • In a method for producing a silicon single crystal by growing a single crystal ingot while a magnetic field perpendicular to a crystal growth axis is applied to a silicon melt contained in a quartz crucible during pulling of the single crystal from the melt contained in the quartz crucible, the crystal growth is performed so that one of a low temperature region and a high temperature region generated at a surface of the silicon melt contained in the crucible should always cover a solid-liquid interface of the crystal growth, or a ratio of vertical magnetic field component to horizontal magnetic field component for magnetic field strength at the crystal center of the surface of the silicon melt contained in the quartz crucible is controlled to be 0.3 or more and 0.5 or less. There are provided methods for producing a silicon single crystal based on the CZ method in which a horizontal magnetic field is applied, which can produce a silicon single crystal ingot of high uniformity of interstitial oxygen concentration along the growth direction of the grown single crystal with high productivity and high yield.
    • 在通过生长单晶锭的同时生长单晶锭的方法,同时将晶体生长轴垂直的磁场施加到包含在石英坩埚中的硅熔体中,从而将单晶从包含在石英坩埚中的熔体中拉出 ,进行晶体生长,使得坩埚中含有的硅熔体表面产生的低温区域和高温区域中的一个应该总是覆盖晶体生长的固 - 液界面,或垂直磁 将在石英坩埚中所含的硅熔体的表面的晶体中心的磁场强度的场磁场分量与水平磁场分量控制在0.3以上且0.5以下。 提供了基于施加水平磁场的CZ方法制造硅单晶的方法,其可以生长具有高生长单晶的生长方向的间隙氧浓度均匀性高的硅单晶锭 生产力和高产量。
    • 9. 发明授权
    • Silicon seed crystal and method for producing silicon single crystal
    • 硅晶种及其制造方法
    • US06670036B2
    • 2003-12-30
    • US09287199
    • 1999-04-06
    • Eiichi IinoMasanori Kimura
    • Eiichi IinoMasanori Kimura
    • B32B516
    • C30B29/06C30B15/36Y10S117/902Y10S117/911Y10S117/916Y10T428/2982
    • There are disclosed a silicon seed crystal which is composed of silicon single crystal and used for the Czochralski method, wherein oxygen concentration in the seed crystal is 15 ppma (JEIDA) or less, a silicon seed crystal which is used for the Czochralski method, wherein the silicon seed crystal does not have a straight body, and a method for producing a silicon single crystal by the Czochralski method comprising using said seed crystal, bringing a tip end of the seed crystal into contact with a silicon melt to melt the tip end of the seed crystal, with or without performing necking operation, and growing a silicon single crystal. The method is capable of improving the rate of success in making crystals dislocation-free and the productivity of single crystal rods regardless of the use of necking operation.
    • 公开了由硅单晶构成并用于切克劳斯基法的硅晶种,其中晶种中的氧浓度为15ppma(JEIDA)以下,用于切克劳斯基法的硅晶种,其中 硅晶种不具有直体,并且通过切克劳斯基法生产硅单晶的方法包括使用所述晶种,使晶种的尖端与硅熔体接触以熔化晶体的末端 具有或不进行颈缩操作的晶种,并且生长硅单晶。该方法能够提高使晶体无位错的成功率和单晶棒的生产率,而不管使用颈缩操作。
    • 10. 发明授权
    • Method for producing silicon single crystal
    • 硅单晶的制造方法
    • US06174363B1
    • 2001-01-16
    • US09281704
    • 1999-03-30
    • Eiichi Iino
    • Eiichi Iino
    • C30B1520
    • C30B29/06C30B15/36
    • In a method for producing a silicon single crystal, a silicon seed crystal having a sharp tip end is prepared, and a part of the silicon seed crystal is melted down from a tip end to a position having a predetermined thickness. This is followed by performing a necking operation to form a tapered necking part and a neck portion, and by subsequently pulling a single crystal ingot after increasing a diameter. The part to be melted down is a part from a tip end to a position in which a thickness is 1.1 to 2 times the diameter of the neck portion to be formed. The necking operation is then performed in such a way that a tapered necking part in the shape of a cone is formed at an early stage thereof by pulling a crystal with gradually decreasing a diameter to a minimum diameter of 5 mm or more, then forming a neck portion. Subsequently, the single crystal ingot is pulled after being increased in diameter. Methods according to the invention enable growing of a single crystal ingot without lowering the rate of success in making the crystal dislocation-free in cases where a thick neck is formed. This improves productivity of heavy silicon single crystals having a large diameter.
    • 在制造硅单晶的方法中,制备具有尖端尖端的硅晶种,并且将硅晶种的一部分从尖端熔化到具有预定厚度的位置。 然后进行缩颈操作以形成锥形颈缩部和颈部,并且随后在增加直径之后拉动单晶锭。 待熔化的部分是从尖端到厚度为要形成的颈部的直径的1.1至2倍的位置的部分。 然后进行颈缩操作,使得通过将直径逐渐减小至最小直径为5mm以上的晶体,在其早期阶段形成锥体形状的锥形颈缩部,然后形成 颈部。 随后,直径增加后拉长单晶锭。 根据本发明的方法使得能够生长单晶锭而不降低在形成较厚的颈部的情况下使晶体无位错的成功率。 这提高了具有大直径的重硅单晶的生产率。