会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明公开
    • Photodetector
    • 光电
    • EP0127724A3
    • 1986-08-06
    • EP84100779
    • 1984-01-26
    • International Business Machines Corporation
    • Chang, Leroy Li-GongFang, Frank Fu
    • H01L31/10
    • H01L31/109
    • There is an abrupt change in band gap in each of the interface regions (9, 10, 11 and 12) between a series of light absorbing regions (2, 3, 4, and 6) of a monocrystalline semiconductor body. The band gap decreases progressively with distance from the light incident surface of the body and the major part of the change in band gap within each of the interface regions is in the band favouring a particular type of carrier. The interface regions are narrower than the carrier mean free path so as to provide kinetic energy for efficient carrier multiplication with reduced noise as the carriers pass through the semiconductor body.
    • 单晶半导体主体的一系列光吸收区域(2,3,4和6)之间的每个界面区域(9,10,11和12)中的带隙存在突变。 带隙随着距离本体的光入射表面的距离逐渐减小,并且每个界面区域内的带隙变化的主要部分在有利于特定类型的载体的带内。 界面区域比载体平均自由路径窄,以便当载体穿过半导体本体时为有效载流子倍增提供动能,同时降低噪声。
    • 3. 发明公开
    • Photodetector
    • Photodetektor。
    • EP0127724A2
    • 1984-12-12
    • EP84100779.2
    • 1984-01-26
    • International Business Machines Corporation
    • Chang, Leroy Li-GongFang, Frank Fu
    • H01L31/10
    • H01L31/109
    • There is an abrupt change in band gap in each of the interface regions (9, 10, 11 and 12) between a series of light absorbing regions (2, 3, 4, and 6) of a monocrystalline semiconductor body. The band gap decreases progressively with distance from the light incident surface of the body and the major part of the change in band gap within each of the interface regions is in the band favouring a particular type of carrier. The interface regions are narrower than the carrier mean free path so as to provide kinetic energy for efficient carrier multiplication with reduced noise as the carriers pass through the semiconductor body.
    • 在单晶半导体主体的一系列光吸收区域(2,3,4,5和6)之间的每个界面区域(9,10,11和12)中的带隙突然变化。 带隙随着与身体的光入射面的距离而逐渐减小,并且每个界面区域内的带隙变化的主要部分在有利于特定类型的载体的带内。 接口区域比载波平均自由路径窄,以便当载流子穿过半导体体时,为降低噪声提供有效载波相乘的动能。
    • 7. 发明公开
    • Semiconductor device using holes as charge carriers
    • Halbleiterbauelement mitLöchernalsLadungsträger。
    • EP0202383A1
    • 1986-11-26
    • EP85308997.7
    • 1985-12-11
    • International Business Machines Corporation
    • Esaki, LeoChang, Leroy Li-GongWang, Wen-I
    • H01L29/32H01L29/36H01L29/205H01L29/80
    • H01L29/7783H01L29/205H01L29/432
    • @ Holes are the charge carriers along a conduction channel in an epitaxial layer (28) of semiconductor material (eg GaSb) formed on a supporting layer - (26) of semiconductor material (eg AISb) which has a lower valance-band energy than that of the material of the epitaxial layer. The material of the epitaxial layer (28) has a lattice spacing when unstrained which is different from the lattice spacing of the material of the supporting layer (26) which is rigid enough to strain the lattice of the material of the epitaxial layer. The material of the epitaxial layer is such that mobile holes are provided in its conduction channel due to the strain put on its lattice by the supporting layer. A further layer (20) of semiconductor material (eg AISb) contiguous with the epitaxial layer (28) is doped to induce the conduction channel in the epitaxial layer and to provide modulation doping.
    • 孔是沿着形成在半导体材料(例如AlSb)的支撑层(26)上的半导体材料(例如GaSb)的外延层(28)中的导电沟道的电荷载流子,其具有比所述半导体材料 外延层的材料。 外延层(28)的材料在不受约束条件下具有不同于支撑层(26)的材料的晶格间距的晶格间距,其刚性足以使外延层材料的晶格变形。 外延层的材料是由于由支撑层放置在其栅格上的应变,在其导电通道中设置有移动孔。 掺杂与外延层(28)邻接的另一层半导体材料(例如AlSb),以引入外延层中的导电沟道并提供调制掺杂。
    • 8. 发明公开
    • Hetero-superlattice PN junctions
    • Übergittermit PN-Hetero-Übergang。
    • EP0555722A1
    • 1993-08-18
    • EP93101518.4
    • 1993-02-01
    • International Business Machines Corporation
    • Chang, Leroy Li-GongGuha, SupratikMunekata, Hiroo
    • H01L33/00
    • H01L33/06B82Y20/00
    • The present invention is a hetero superlattice pn junction. In particular, the invention combines n and p type superlattices (250, 200) into a single pn junction having a bandgap sufficient to create high frequency (i.e. blue or higher) light emission. Individual superlattices (250, 200) are formed using a molecular beam epitaxy process. This process creates thin layers (10, 30, 40, 60, 70, 90) of well material separated by thin layers (20, 50, 80) of barrier material. The well material is doped to create carrier concentrations and the barrier materials are chosen in combination with the thickness of the well materials to adjust the effective bandgap of the superlattice in order to create an effective wide bandgap material. The barrier material for the n and p type superlattices (250, 200) is different from the material used to form either of the two types of well layers. A particular embodiment of the present invention forms a first superlattice (250) from n type doped ZnSe well layers (10, 30) and undoped ZnMnSe barrier layers (20) and forms a second superlattice (200) from p type doped ZnTe well layers (70, 90) and undoped ZnMnSe barrier layers (80). The first and second superlattices (250, 200) are merged into a hetero superlattice pn junction. The thickness and composition of the individual well and barrier layers can be modified to adjust the effective bandgap of the pn junction. Therefore, a wide bandgap diode is formed from previously incompatible materials.
    • 本发明是异质超晶格pn结。 特别地,本发明将n型和p型超晶格(250,200)组合成具有足以产生高频(即蓝色或更高)光发射的带隙的单个pn结。 使用分子束外延法形成单个超晶格(250,200)。 该过程产生由隔离材料的薄层(20,50,80)分隔开的材料的薄层(10,30,40,60,70,90)。 掺杂阱材料以产生载流子浓度,并且与阱材料的厚度结合选择阻挡材料以调整超晶格的有效带隙,以便产生有效的宽带隙材料。 用于n型和p型超晶格(250,200)的阻挡材料与用于形成两种类型的阱层中的任一种的材料不同。 本发明的一个具体实施方案从n型掺杂的ZnSe阱层(10,30)和未掺杂的ZnMnSe阻挡层(20)形成第一超晶格(250),并从p型掺杂的ZnTe阱层形成第二超晶格(200) 70,90)和未掺杂的ZnMnSe阻挡层(80)。 第一和第二超晶格(250,200)被合并成异质超晶格pn结。 可以修改单个阱和阻挡层的厚度和组成以调节pn结的有效带隙。 因此,宽带隙二极管由先前不兼容的材料形成。
    • 9. 发明公开
    • Resonant tunneling semiconductor devices
    • Halbleiteranordnungen mit resonanceem Tunneleffekt。
    • EP0253174A1
    • 1988-01-20
    • EP87109210.2
    • 1987-06-26
    • International Business Machines Corporation
    • Chang, Leroy Li-Gong
    • H01L29/205H01L29/76H01L31/02H01S3/19G02F1/015
    • B82Y20/00G02F1/017H01L29/7606H01L31/0352H01S5/34313H01S5/3432
    • This disclosure relates to resonant tunneling semi­conductor devices useful for transport functions such as switching or amplification, and also for electro-­optical conversions. In the structure of these devices, a central potential well (l0) is formed of an opposite conductivity type of semiconductor material to two semiconductor layers (l2) outside resonant tunneling barriers (l4) on each side of the central potential well, such that electrons in the well can tunnel to and from the outside semiconductor layers. The central potential well serves as the base of a three terminal device in transport applications, and as the light responsive portion for electro-optical applications. In one disclosed embodiment, the device is constructed in five layers of the most commonly used gallium-­aluminium-arsenide compounds, an n GaAs substrate, undoped GaAlAs, p GaAs, undoped GaAlAs, and n GaAs.
    • 本公开涉及对于诸如开关或放大之类的传输功能以及用于电光转换的谐振隧穿半导体器件。 在这些器件的结构中,中心势阱(10)由相对导电类型的半导体材料形成到位于中心势阱的每一侧上的谐振隧穿势垒(14)外的两个半导体层(12),使得电子 在井内隧道往返于外部的半导体层。 中心势阱用作运输应用中的三端装置的基底,以及用于电光应用的光响应部分。 在一个公开的实施例中,器件由五层最常用的镓 - 砷化镓化合物,n型GaAs衬底,未掺杂的GaAlAs,p GaAs,未掺杂的GaAlAs和n GaAs构成。