会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Many-to-many PCIe switch
    • US11593292B2
    • 2023-02-28
    • US16894437
    • 2020-06-05
    • INTEL CORPORATION
    • Patrick ConnorMatthew A. JaredDuke C. HongElizabeth M. KapplerChris PavlasScott P. Dubal
    • G06F13/00G06F13/40
    • Methods, apparatus, and computer platforms and architectures employing many-to-many and many-to-one peripheral switches. The methods and apparatus may be implemented on computer platforms having multiple nodes, such as those employing a Non-uniform Memory Access (NUMA) architecture, wherein each node comprises a plurality of components including a processor having at least one level of memory cache and being operatively coupled to system memory and operatively coupled to a many-to-many peripheral switch that includes a plurality of downstream ports to which NICs and/or peripheral expansion slots are operatively coupled, or a many-to-one switch that enables a peripheral device to be shared by multiple nodes. During operation, packets are received at the NICs and DMA memory writes are initiated using memory write transactions identifying a destination memory address. The many-to-many and many-to-one peripheral switches forwards the transaction packets internally within the switch based on the destination address such that the packets are forwarded to a node via which the memory address can be accessed. The platform architectures may also be configured to support migration operations in response to failure or replacement of a node.
    • 9. 发明授权
    • Many-to-many PCIE switch
    • US11960429B2
    • 2024-04-16
    • US18082485
    • 2022-12-15
    • Intel Corporation
    • Patrick ConnorMatthew A. JaredDuke C. HongElizabeth M. KapplerChris PavlasScott P. Dubal
    • G06F13/00G06F13/40
    • G06F13/4022
    • Methods, apparatus, and computer platforms and architectures employing many-to-many and many-to-one peripheral switches. The methods and apparatus may be implemented on computer platforms having multiple nodes, such as those employing a Non-uniform Memory Access (NUMA) architecture, wherein each node comprises a plurality of components including a processor having at least one level of memory cache and being operatively coupled to system memory and operatively coupled to a many-to-many peripheral switch that includes a plurality of downstream ports to which NICs and/or peripheral expansion slots are operatively coupled, or a many-to-one switch that enables a peripheral device to be shared by multiple nodes. During operation, packets are received at the NICs and DMA memory writes are initiated using memory write transactions identifying a destination memory address. The many-to-many and many-to-one peripheral switches forwards the transaction packets internally within the switch based on the destination address such that the packets are forwarded to a node via which the memory address can be accessed. The platform architectures may also be configured to support migration operations in response to failure or replacement of a node.