会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明申请
    • IMPROVED TECHNIQUES FOR THREE-DIMENSIONAL IMAGE EDITING
    • 改进的三维图像编辑技术
    • WO2014139105A1
    • 2014-09-18
    • PCT/CN2013/072544
    • 2013-03-13
    • INTEL CORPORATIONDING, DayongDU, YangzhouLI, Jianguo
    • DING, DayongDU, YangzhouLI, Jianguo
    • G06F11/00
    • G06T11/60G06T15/00H04N13/128
    • Techniques for three-dimensional (3D) image editing are described. In one embodiment, for example, an apparatus may comprise a processor circuit and a 3D graphics management module, and the 3D graphics management module maybe operable by the processor circuit to determine modification information for a first sub-image in a 3D image comprising the first sub -image and a second sub -image, modify the first sub- image based on the modification information for the first sub-image, determine modification information for the second sub -image based on the modification information for the first sub-image, and modify the second sub-image based on the modification information for the second sub-image. Other embodiments are described and claimed.
    • 描述三维(3D)图像编辑技术。 在一个实施例中,例如,设备可以包括处理器电路和3D图形管理模块,并且3D图形管理模块可以由处理器电路操作以确定3D图像中的第一子图像的修改信息,所述3D图像包括第一 子图像和第二子图像,基于第一子图像的修改信息修改第一子图像,基于第一子图像的修改信息确定第二子图像的修改信息,以及 基于第二子图像的修改信息修改第二子图像。 描述和要求保护其他实施例。
    • 8. 发明申请
    • VISUAL RECOGNITION USING DEEP LEARNING ATTRIBUTES
    • 用深度学习属性进行视觉识别
    • WO2017096570A1
    • 2017-06-15
    • PCT/CN2015/096882
    • 2015-12-10
    • INTEL CORPORATIONLI, JianguoLUO, JianweiCHEN, Yurong
    • LI, JianguoLUO, JianweiCHEN, Yurong
    • G06K9/66
    • G06K9/4628G06K9/6269G06K9/66G06N3/04G06N3/08
    • A processing device for performing visual recognition using deep learning attributes and method for performing the same are described. In one embodiment, a processing device comprises: an interface to receive an input image; and a recognition unit coupled to the interface and operable to perform visual object recognition on the input image, where the recognition unit has an extractor to extract region proposals from the input image, a convolutional neural network (CNN) to compute features for each extracted region proposal, the CNN being operable to create a soft-max layer output, a cross region pooling unit operable to perform pooling of the soft-max layer output to create a set of attributes of the input image, and an image classifier operable to perform image classification based on the attributes of the input image.
    • 描述了使用深度学习属性执行视觉识别的处理设备和用于执行该处理的方法。 在一个实施例中,处理设备包括:接口,用于接收输入图像;以及识别单元,其耦合到接口并且可操作以在输入图像上执行视觉对象识别,其中识别单元具有提取器以从 输入图像,用于计算每个提取的区域提议的特征的卷积神经网络(CNN),所述CNN可操作以创建软 - 最大层输出;交叉区域合并单元,可操作以执行合并所述软 - 最大层输出以创建 输入图像的一组属性,以及图像分类器,可操作用于基于输入图像的属性执行图像分类。