会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 4. 发明授权
    • Method for ordering image spaces to search for object surfaces
    • 用于排序图像空间以搜索对象表面的方法
    • US06400846B1
    • 2002-06-04
    • US09326750
    • 1999-06-04
    • I-Jong LinAnthony VetroHuifang SunSun-Yuan Kung
    • I-Jong LinAnthony VetroHuifang SunSun-Yuan Kung
    • G06K936
    • G06T7/20G06T7/12G06T7/162G06T7/174G06T2207/10016
    • A method determines a surface of an object in a sequence of images. The method begins by estimating a boundary of the object in each image of the sequence using motion information of adjacent images of the sequence. Then, portions of each image of the sequence are ordered to produce an ordered sequence of images. The ordered portions are exterior to the estimated object boundary. Edges in each ordered image are filtered using the motion information, and each ordered image of the sequence is searched to locate the filtered edges to form a new boundary outside the estimated boundary. The filtering and searching are repeated, while projecting the new object boundaries over the sequence of images, until the new object boundaries converges to a surface of the object.
    • 方法确定图像序列中的对象的表面。 该方法通过使用序列的相邻图像的运动信息来估计序列的每个图像中的对象的边界来开始。 然后,序列的每个图像的部分被排序以产生有序的图像序列。 有序部分在估计对象边界的外部。 使用运动信息对每个有序图像中的边缘进行滤波,并且搜索序列的每个有序图像以定位经滤波的边缘以在估计边界外部形成新的边界。 重复过滤和搜索,同时在图像序列上投影新对象边界,直到新对象边界收敛到对象的表面。
    • 8. 发明授权
    • Neural network for locating and recognizing a deformable object
    • 用于定位和识别可变形物体的神经网络
    • US5850470A
    • 1998-12-15
    • US521176
    • 1995-08-30
    • Sun-Yuan KungShang-Hung LinLong-Ji LinMing Fang
    • Sun-Yuan KungShang-Hung LinLong-Ji LinMing Fang
    • G06K9/00G07C9/00G06E1/00G06E3/00G06K9/62
    • G06K9/6281G06K9/00241G06K9/32G06K9/6273G06K9/6278G07C9/00158
    • A system for automatically detecting and recognizing the identity of a deformable object such as a human face, within an arbitrary image scene. The system comprises an object detector implemented as a probabilistic DBNN, for determining whether the object is within the arbitrary image scene and a feature localizer also implemented as a probabilistic DBNN, for determining the position of an identifying feature on the object such as the eyes. A feature extractor is coupled to the feature localizer and receives coordinates sent from the feature localizer which are indicative of the position of the identifying feature and also extracts from the coordinates information relating to other features of the object such as the eyebrows and nose, which are used to create a low resolution image of the object. A probabilistic DBNN based object recognizer for determining the identity of the object receives the low resolution image of the object inputted from the feature extractor to identify the object.
    • 一种用于在任意图像场景内自动检测和识别诸如人脸之类的可变形对象的身份的系统。 该系统包括实现为概率DBNN的对象检测器,用于确定对象是否在任意图像场景内,并且特征定位器也被实现为概率DBNN,用于确定诸如眼睛的对象上的识别特征的位置。 特征提取器耦合到特征定位器并且接收从特征定位器发送的坐标,其指示识别特征的位置,并且还从坐标中提取关于诸如眉毛和鼻子的对象的其他特征的信息,这些信息是 用于创建对象的低分辨率图像。 用于确定对象的身份的基于概率DBNN的对象识别器接收从特征提取器输入的对象的低分辨率图像以识别对象。