会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Magnetic nanotubes
    • 磁性纳米管
    • US07834139B2
    • 2010-11-16
    • US10593514
    • 2005-03-14
    • Hiroshi MatsuiTadashi Matsunaga
    • Hiroshi MatsuiTadashi Matsunaga
    • A61K38/00H01F1/00C01G49/08
    • B82Y30/00B82Y5/00B82Y15/00B82Y25/00C01G49/08C01P2004/04C01P2004/13C01P2004/64C01P2006/42C07K14/195G01N33/56911G01N33/588H01F1/0081Y10S977/838Y10S977/904Y10T428/32
    • A magnetic nanotube includes bacterial magnetic nanocrystals contacted onto a nanotube which absorbs the nanocrystals. The nanocrystals are contacted on at least one surface of the nanotube. A method of fabricating a magnetic nanotube includes synthesizing the bacterial magnetic nanocrystals, which have an outer layer of proteins. A nanotube provided is capable of absorbing the nanocrystals and contacting the nanotube with the nanocrystals. The nanotube is preferably a peptide bolaamphiphile. A nanotube solution and a nanocrystal solution including a buffer and a concentration of nanocrystals are mixed. The concentration of nanocrystals is optimized, resulting in a nanocrystal to nanotube ratio for which bacterial magnetic nanocrystals are immobilized on at least one surface of the nanotubes. The ratio controls whether the nanocrystals bind only to the interior or to the exterior surfaces of the nanotubes. Uses include cell manipulation and separation, biological assay, enzyme recovery, and biosensors.
    • 磁性纳米管包括接触纳米管的细菌磁性纳米晶体,其吸收纳米晶体。 纳米晶体在纳米管的至少一个表面上接触。 制造磁性纳米管的方法包括合成具有蛋白质外层的细菌磁性纳米晶体。 所提供的纳米管能够吸收纳米晶体并使纳米管与纳米晶体接触。 纳米管优选为多肽多肽。 混合包含缓冲液和纳米晶体浓度的纳米管溶液和纳米晶体溶液。 纳米晶体的浓度被优化,导致纳米晶体与纳米管的比率,细菌磁性纳米晶体固定在纳米管的至少一个表面上。 该比例控制纳米晶体是否仅结合到纳米管的内部或外部表面。 用途包括细胞操作和分离,生物测定,酶回收和生物传感器。
    • 2. 发明申请
    • Magnetic Nanotubes
    • 磁性纳米管
    • US20070200085A1
    • 2007-08-30
    • US10593514
    • 2005-03-14
    • Hiroshi MatsuiTadashi Matsunaga
    • Hiroshi MatsuiTadashi Matsunaga
    • H01F1/00C01G49/08
    • B82Y30/00B82Y5/00B82Y15/00B82Y25/00C01G49/08C01P2004/04C01P2004/13C01P2004/64C01P2006/42C07K14/195G01N33/56911G01N33/588H01F1/0081Y10S977/838Y10S977/904Y10T428/32
    • A magnetic nanotube includes bacterial magnetic nanocrystals contacted onto a nanotube which absorbs the nanocrystals. The nanocrystals are contacted on at least one surface of the nanotube. A method of fabricating a magnetic nanotube includes synthesizing the bacterial magnetic nanocrystals, which have an outer layer of proteins. A nanotube provided is capable of absorbing the nanocrystals and contacting the nanotube with the nanocrystals. The nanotube is preferably a peptide bolaamphiphile. A nanotube solution and a nanocrystal solution including a buffer and a concentration of nanocrystals are mixed. The concentration of nanocrystals is optimized, resulting in a nanocrystal to nanotube ratio for which bacterial magnetic nanocrystals are immobilized on at least one surface of the nanotubes. The ratio controls whether the nanocrystals bind only to the interior or to the exterior surfaces of the nanotubes. Uses include cell manipulation and separation, biological assay, enzyme recovery, and biosensors.
    • 磁性纳米管包括接触纳米管的细菌磁性纳米晶体,其吸收纳米晶体。 纳米晶体在纳米管的至少一个表面上接触。 制造磁性纳米管的方法包括合成具有蛋白质外层的细菌磁性纳米晶体。 所提供的纳米管能够吸收纳米晶体并使纳米管与纳米晶体接触。 纳米管优选为多肽多肽。 混合包含缓冲液和纳米晶体浓度的纳米管溶液和纳米晶体溶液。 纳米晶体的浓度被优化,导致纳米晶体与纳米管的比率,细菌磁性纳米晶体固定在纳米管的至少一个表面上。 该比例控制纳米晶体是否仅结合到纳米管的内部或外部表面。 用途包括细胞操作和分离,生物测定,酶回收和生物传感器。
    • 7. 发明授权
    • Solar cell
    • 太阳能电池
    • US07825330B2
    • 2010-11-02
    • US11022672
    • 2004-12-28
    • Kenichi OkadaHiroshi MatsuiNobuo Tanabe
    • Kenichi OkadaHiroshi MatsuiNobuo Tanabe
    • H01L31/00
    • H01M14/005H01G9/2022H01G9/2031H01G9/2059
    • A solar cell and photovoltaic power generation apparatus including a transparent electrically conductive film, a semiconductor provided on the transparent electrically conductive film, a conductive film opposing the semiconductor, and an electrolyte solution filled between the semiconductor and the conductive film. Metal ions, such as silver ions, may be dissolved in the electrolyte solution. When light is incident on the cell, the metal ions cause an oxidation-reduction reaction in the electrolyte solution and the cell is charged. When the open-circuit voltage decreases because the amount of incident light drops or light is blocked, the cell discharges to function as a secondary cell.
    • 一种太阳能电池和光伏发电装置,包括透明导电膜,设置在透明导电膜上的半导体,与半导体相对的导电膜,以及填充在半导体和导电膜之间的电解质溶液。 诸如银离子的金属离子可以溶解在电解质溶液中。 当光入射到电池上时,金属离子在电解质溶液中引起氧化还原反应,并且电池被充电。 当开路电压降低时,由于入射光的量下降或光线被阻挡,电池放电起二次电池的作用。
    • 10. 发明申请
    • TEMPERATURE-COMPENSATED CRYSTAL OSCILLATOR AND TEMPERATURE COMPENSATION METHOD FOR OSCILLATOR
    • 振荡器的温度补偿晶体振荡器和温度补偿方法
    • US20080297268A1
    • 2008-12-04
    • US12127201
    • 2008-05-27
    • Hiroshi MatsuiYuichi Takagi
    • Hiroshi MatsuiYuichi Takagi
    • H03L1/02
    • H03L1/025
    • A temperature-compensated crystal oscillator includes an oscillation circuit including an oscillator, a temperature detector, a voltage variable capacitance element coupled to an oscillation loop of the oscillation circuit, and a temperature compensation circuit. The temperature compensation circuit is configured to apply a compensation voltage to the voltage variable capacitance element to compensate a temperature change in response to temperature data detected by the temperature detector. The temperature compensation circuit has a plurality of correction point data. The respective correction point data is set in advance for each divided temperature zone, selects a first correction point data in a lower temperature zone and a second correction point data in a higher temperature zone, as compared with the detected temperature data, performs an interpolation between the first and second correction point data by a weighted averaged first-order interpolation, and generates the compensation voltage.
    • 温度补偿晶体振荡器包括振荡电路,包括振荡器,温度检测器,耦合到振荡电路的振荡环路的电压可变电容元件和温度补偿电路。 温度补偿电路被配置为向电压可变电容元件施加补偿电压,以补偿由温度检测器检测到的温度数据的温度变化。 温度补偿电路具有多个校正点数据。 对于每个分割的温度区域预先设定各个校正点数据,与检测到的温度数据相比,选择较低温度区域中的第一校正点数据和较高温度区域中的第二校正点数据,执行在 第一和第二校正点数据通过加权平均一阶插值,并产生补偿电压。