会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Linear motor and control method thereof
    • 线性电动机及其控制方法
    • US4678971A
    • 1987-07-07
    • US817623
    • 1986-01-10
    • Hiroshi KanazawaSeizi YamashitaKunio Miyashita
    • Hiroshi KanazawaSeizi YamashitaKunio Miyashita
    • H02K41/02H02K41/00
    • H02K41/031
    • A linear motor comprises a first magnetic pole having a plurality of uneven magnetic pole teeth of magnetic material arranged longitudinally at predetermined regular intervals of length, and a second magnetic pole having a yoke and plurality of uneven magnetic pole teeth made of magnetic material opposed to the first magnetic pole with a slight gap and a coil wound on each magnetic pole tooth and the permanent magnets, in which the relative position of the first and second magnetic poles in the longitudinal direction can be varied. The longitudinal lengths of the protruded portion of the second magnetic pole are substantially equal with each other. The longitudinal length of the recessed portion of the second magnetic pole is set to about one-third of the longitudinal length of the protruded portion of the first magnetic pole. The number of the protruded portions of the first magnetic pole is set to be a multiple of two.
    • 线性电动机包括:第一磁极,具有多个以规定的长度方向纵向布置的磁性材料的不均匀的磁极齿;以及具有磁轭的第二磁极和由磁性材料相对的磁性材料构成的多个不均匀的磁极齿 第一磁极具有微小的间隙,线圈缠绕在每个磁极齿和永磁体上,其中第一和第二磁极在纵向上的相对位置可以改变。 第二磁极的突出部分的纵向长度基本相等。 第二磁极的凹部的纵向长度被设定为第一磁极的突出部的纵向长度的大约三分之一。 第一磁极的突出部的数量被设定为2的倍数。
    • 2. 发明授权
    • Optical disk drive
    • 光盘驱动器
    • US07990814B2
    • 2011-08-02
    • US11763515
    • 2007-06-15
    • Suguru TakishimaHiroshi NishikawaHiroshi KanazawaRyosei Honma
    • Suguru TakishimaHiroshi NishikawaHiroshi KanazawaRyosei Honma
    • G11B7/00
    • G11B7/123G11B7/08582
    • An optical disk drive for recording information on a recording surface of an optical disk and reading information recorded in the optical disk is provided. The optical disk drive includes a spindle to rotate the optical disk and a carriage movable in parallel with a tracking direction of the optical disk. The carriage includes a laser light source to emit laser light, a collimator lens to convert divergent light into parallel light and is arranged with an optical center thereof being in a farther and offset position with respect to an optical axis of the laser light, a reflecting mirror to receive and deflect the laser light transmitted through the collimator lens in a direction perpendicular to the recording surface of the optical disk, and an objective lens to converge the laser light deflected by the reflecting mirror on a position corresponding to the recording surface of the optical disk.
    • 提供一种用于在光盘的记录表面上记录信息并读取记录在光盘中的信息的光盘驱动器。 光盘驱动器包括用于旋转光盘的主轴和可与光盘的跟踪方向并行移动的滑架。 滑架包括用于发射激光的激光源,将发散光转换为平行光的准直透镜,并且其光学中心相对于激光的光轴位于更远和偏移位置,反射 反射镜,以在垂直于光盘的记录表面的方向上接收和偏转透射准直透镜的激光;以及物镜,将由反射镜偏转的激光会聚在与该光盘的记录表面相对应的位置上 光盘。
    • 9. 发明授权
    • Word spotting in a variable noise level environment
    • 在可变噪声水平环境中的字眼
    • US5794194A
    • 1998-08-11
    • US794770
    • 1997-02-03
    • Yoichi TakebayashiHiroyuki TsuboiHiroshi Kanazawa
    • Yoichi TakebayashiHiroyuki TsuboiHiroshi Kanazawa
    • G10L15/00G10L15/04G10L5/06G10L7/08
    • G10L15/05G10L2015/088
    • Low- and high-dimensional feature parameters are obtained by analyzing a speech pattern to be recognized. A word spotting section extracts a plurality of approximate word feature vector candidates representing word features from the low-dimensional feature parameter without fixing word boundaries. Start and end points are detected for each of the word feature vector candidates. Detail word feature vector candidates are extracted from the high-dimensional feature parameter in accordance with the detected start and end points. A recognition dictionary stores reference patterns with which the detail word feature vector candidates are matched. A pattern matching section calculates similarity values between each of the detail word feature vector candidates and the reference patterns stored in the recognition dictionary. A recognition result selects reference patterns stored in the recognition dictionary when its similarity value is greater than a prescribed threshold value.
    • 通过分析要识别的语音模式获得低维和高维特征参数。 单词识别部分从低维特征参数提取表示单词特征的多个近似字特征向量候选而不固定词边界。 对于每个单词特征向量候选来检测起点和终点。 根据检测到的起点和终点,从高维特征参数提取细节特征向量候选。 识别词典存储细节词特征向量候选与之匹配的参考模式。 模式匹配部分计算每个细节特征向量候选和存储在识别字典中的参考模式之间的相似度值。 当识别结果的相似度值大于规定的阈值时,识别结果选择存储在识别词典中的参考模式。
    • 10. 发明授权
    • Method and apparatus for time series signal recognition with signal
variation proof learning
    • 用信号变异校正学习的时间序列信号识别方法和装置
    • US5761639A
    • 1998-06-02
    • US295170
    • 1994-08-24
    • Yoich TakebayashiHiroshi KanazawaHiroyuki Chimoto
    • Yoich TakebayashiHiroshi KanazawaHiroyuki Chimoto
    • G10L15/00G10L15/06G10L15/20G10L5/06
    • G10L15/063G10L15/20G10L2015/0631G10L2015/0638G10L2015/088G10L21/0216
    • A time series signal recognition capable of obtaining a high recognition rate even for the speech data with low S/N ratio in noisy environments. The time series signals are recognized by extracting a plurality of candidate feature vectors characterizing an individual time series signal, without fixing a boundary for the individual time series signal. Similarity values are calculated for each of the plurality of candidate feature vectors and the reference patterns stored in the recognition dictionary, from which one reference pattern for which the similarity value is greater than a prescribed threshold value is selected as a recognition result. New reference patterns to be stored in the recognition dictionary are learned by acquiring actual background noise of the apparatus, and mixing prescribed noiseless signal patterns with the acquired background noise to form signal patterns for learning. The signal patterns for learning are recognized by extracting features vectors for learning from the signal patterns for learning, and the new reference patterns are obtained from the extracted feature vectors for learning. The learning process is iterated at different noise levels, so as to optimize the determination of the word boundary. The background noise may be constantly acquired, and learning can be carried out using the noise data acquired immediately before the speech data is input.
    • 即使在嘈杂环境中具有低S / N比的语音数据,也能够获得高识别率的时间序列信号识别。 通过提取表征各个时间序列信号的多个候选特征向量,而不固定各个时间序列信号的边界来识别时间序列信号。 对于存储在识别词典中的多个候选特征向量和参考图案中的每一个计算相似度值,从中选择相似度值大于规定阈值的一个参考图案作为识别结果。 通过获取装置的实际背景噪声,并将规定的无噪声信号模式与所获取的背景噪声混合,形成要存储在识别字典中的新参考模式,以形成用于学习的信号模式。 用于学习的信号模式通过从用于学习的信号模式中提取用于学习的特征向量来识别,并且从所提取的用于学习的特征向量获得新的参考模式。 学习过程在不同的噪声级别迭代,以优化单词边界的确定。 可以不断地获取背景噪声,并且可以使用在语音数据输入之前立即获取的噪声数据来进行学习。