会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明申请
    • METHOD, APPARATUS AND PROGRAM FOR DETECTING AN OBJECT
    • 用于检测对象的方法,装置和程序
    • WO2005081792A3
    • 2006-09-21
    • PCT/US2005003822
    • 2005-02-07
    • HONDA MOTOR CO LTDYANG MING-HSUANLIM JONGWOOROSS DAVID AOHASHI TAKAHIRO
    • YANG MING-HSUANLIM JONGWOOROSS DAVID AOHASHI TAKAHIRO
    • G06K9/36G06K9/00G06K9/48
    • G06K9/00201
    • The advantage of the present invention is to appropriately detect the object. The object detection apparatus in the present invention has a plurality of cameras (2) to determine the distance to the objects, a distance determination unit (11) to determine the distance therein, a histogram generation unit (13) to specify the frequency of the pixels against the distances to the pixels, an object distance determination unit (14) that determines the most likely distance, a probability mapping unit (15) that provides the probabilities of the pixels based on the difference of the distance, a kernel detection unit (16a) that determines a kernel region as a group of the pixels, a periphery detection unit (16b) that determines a peripheral region as a group of the pixels, selected from the pixels being close to the kernel region and an object specifying unit (17) that specifies the object region where the object is present with a predetermined probability.
    • 本发明的优点是适当地检测物体。 本发明的物体检测装置具有多个照相机(2),用于确定与物体的距离,距离确定单元(11),用于确定其中的距离;直方图生成单元(13),用于指定 相对于像素的距离的像素,确定最可能的距离的对象距离确定单元(14),基于距离的差异提供像素的概率的概率映射单元(15),内核检测单元 确定作为像素组的核心区域的周边检测单元(16b),其将周围区域确定为从接近所述核心区域的像素中选择的像素组,以及对象指定单元(17 )以预定概率指定对象存在的对象区域。
    • 4. 发明申请
    • SIMULTANEOUS LOCALIZATION AND MAPPING USING MULTIPLE VIEW FEATURE DESCRIPTORS
    • 使用多个视图功能描述符的同时定位和映射
    • WO2005104737A3
    • 2009-04-16
    • PCT/US2005014365
    • 2005-04-26
    • HONDA MOTOR CO LTDGUPTA RAKESHYANG MING-HSUANMELTZER JASON
    • GUPTA RAKESHYANG MING-HSUANMELTZER JASON
    • G06K9/46G06K9/00G06K9/62
    • G06K9/6255G06K9/00201G06K9/00664G06K9/6248G06K2209/29
    • Simultaneous localization and mapping (SLAM) utilizes multiple view feature descriptors to robustly determine location despite appearance changes that would stifle conventional systems. A SLAM algorithm generates a feature descriptor for a scene from different perspectives using kernel principal component analysis (KPCA). When the SLAM module subsequently receives a recognition image after a wide baseline change, it can refer to correspondences from the feature descriptor to continue map building and/or determine location. Appearance variations can result from, for example, a change in illumination, partial occlusion, a change in scale, a change in orientation, change in distance, warping, and the like. After an appearance variation, a structure-from-motion module uses feature descriptors to reorient itself and continue map building using an extended Kalman Filter. Through the use of a database of comprehensive feature descriptors, the SLAM module is also able to refine a position estimation despite appearance variations.
    • 同时定位和映射(SLAM)利用多个视图特征描述符来鲁棒地确定位置,尽管出现了会阻碍常规系统的变化。 SLAM算法使用内核主成分分析(KPCA)从不同的角度生成场景的特征描述符。 当SLAM模块随后在宽基线改变之后接收到识别图像时,其可以参考来自特征描述符的对应关系,以继续构建图像和/或确定位置。 外观变化可以由例如照明变化,部分遮挡,尺度变化,取向变化,距离变化,翘曲等引起。 在外观变化之后,运动结构模块使用特征描述符重新定向自身,并使用扩展卡尔曼滤波器继续构建地图。 通过使用综合特征描述符的数据库,SLAM模块也可以改进位置估计,尽管外观变化。
    • 9. 发明申请
    • CLUSTERING APPEARANCES OF OBJECTS UNDER VARYING ILLUMINATION CONDITIONS
    • 在不同的照明条件下对象的聚集外观
    • WO2004044823A3
    • 2004-07-15
    • PCT/US0335554
    • 2003-11-06
    • HONDA MOTOR CO LTDYANG MING-HSUANHO JEFFREY
    • YANG MING-HSUANHO JEFFREY
    • G06K20060101G06K9/00G06K9/62
    • G06K9/4661G06K9/00275G06K9/6218
    • [0060] Taking a set of unlabeled images of a collection of objects acquired under différent imaging conditions, and decomposing the set into disjoint subsets corresponding to individual objects requires clustering. Appearance-based methods for clustering a set of images (101c) of 3-D objects acquired under varying illumination conditions (100a) can be based on the concept of illumination cones. A clustering problem is equivalent to fmding convex polyhedral eones (301c) in the high-dimensional image space. To efficiently determine the conic structures hidden in the image data, the concept of conic affinity can be used which measures the likelihood of a pair of images belonging to the saine underlying polyhedral cone. Other algorithme can be based on affinity measure based on image gradient comparisons operating directly on die image gradients by comparing the magnitudes and orientations of the image gradient.
    • 采用在不同成像条件下获取的对象集合的一组未标记图像,并且将该集合分解成对应于各个对象的不相交子集需要聚类。 用于聚类在变化的照明条件(100a)下获取的3-D物体的一组图像(101c)的基于外观的方法可以基于照明锥的概念。 聚类问题相当于高维图像空间中的多边形凸面(301c)。 为了有效地确定隐藏在图像数据中的圆锥形结构,可以使用锥形亲和度的概念,其测量属于下面的多面体锥体中的一对图像的可能性。 其他算法可以基于通过比较图像梯度的幅度和方向基于直接在管芯图像梯度上操作的图像梯度比较的亲和度测量。
    • 10. 发明申请
    • FACE RECOGNITION SYSTEM
    • 脸部识别系统
    • WO2005079237A3
    • 2007-12-27
    • PCT/US2005003818
    • 2005-02-07
    • HONDA MOTOR CO LTDYANG MING-HSUANLIM JONGWOOROSS DAVID AOHASHI TAKAHIRO
    • YANG MING-HSUANLIM JONGWOOROSS DAVID AOHASHI TAKAHIRO
    • G06K9/62G06K9/00G06K9/68G06K9/74
    • G06K9/6269G06K9/00228G06K9/6857
    • The face detection system and method attempts classification of a test image before performing all of the kernel evaluations. Many subimages are not faces and should be relatively easy to identify as such. Thus, the SVM classifier try to discard non-face images using as few kernel evaluations as possible using a cascade SVM classification. In the first stage, a score is computed for the first two support vectors, and the score is compared to a threshold. If the score is below the threshold value, the subimage is classified as not a face. If the score is above the threshold value, the cascade SVM classification function continues to apply more complicated decision rules, each time doubling the number of kernel evaluations, classifying the image as a non-face (and thus terminating the process) as soon as the test image fails to satisfy one of the decision rules. Finally, if the subimage has satisfied all intermediary decision rules, and has now reached the point at which all support vectors must be considered, the original decision function is applied. Satisfying this final rule, and all intermediary rules, is the only way for a test image to garner a positive (face) classification.
    • 面部检测系统和方法在执行所有内核评估之前尝试对测试图像进​​行分类。 许多子图像不是面孔,应该比较容易识别。 因此,SVM分类器尝试使用级联SVM分类尽可能少地使用内核评估来丢弃非面部图像。 在第一阶段,对前两个支持向量计算分数,并将分数与阈值进行比较。 如果分数低于阈值,则子图像被分类为不是脸部。 如果分数高于阈值,则级联SVM分类功能继续应用更复杂的决策规则,每次将内核评估的数量加倍,将图像分类为非面(并因此终止进程),一旦 测试图像不能满足其中一个决策规则。 最后,如果子图像满足了所有的中介决策规则,并且现在已经到了必须考虑所有支持向量的点,则应用原始决策函数。 满足这个最终规则和所有中介规则是测试图像获得积极(面部)分类的唯一方法。