会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 4. 发明申请
    • CLUSTERING APPEARANCES OF OBJECTS UNDER VARYING ILLUMINATION CONDITIONS
    • 在不同的照明条件下对象的聚集外观
    • WO2004044823A3
    • 2004-07-15
    • PCT/US0335554
    • 2003-11-06
    • HONDA MOTOR CO LTDYANG MING-HSUANHO JEFFREY
    • YANG MING-HSUANHO JEFFREY
    • G06K20060101G06K9/00G06K9/62
    • G06K9/4661G06K9/00275G06K9/6218
    • [0060] Taking a set of unlabeled images of a collection of objects acquired under différent imaging conditions, and decomposing the set into disjoint subsets corresponding to individual objects requires clustering. Appearance-based methods for clustering a set of images (101c) of 3-D objects acquired under varying illumination conditions (100a) can be based on the concept of illumination cones. A clustering problem is equivalent to fmding convex polyhedral eones (301c) in the high-dimensional image space. To efficiently determine the conic structures hidden in the image data, the concept of conic affinity can be used which measures the likelihood of a pair of images belonging to the saine underlying polyhedral cone. Other algorithme can be based on affinity measure based on image gradient comparisons operating directly on die image gradients by comparing the magnitudes and orientations of the image gradient.
    • 采用在不同成像条件下获取的对象集合的一组未标记图像,并且将该集合分解成对应于各个对象的不相交子集需要聚类。 用于聚类在变化的照明条件(100a)下获取的3-D物体的一组图像(101c)的基于外观的方法可以基于照明锥的概念。 聚类问题相当于高维图像空间中的多边形凸面(301c)。 为了有效地确定隐藏在图像数据中的圆锥形结构,可以使用锥形亲和度的概念,其测量属于下面的多面体锥体中的一对图像的可能性。 其他算法可以基于通过比较图像梯度的幅度和方向基于直接在管芯图像梯度上操作的图像梯度比较的亲和度测量。
    • 10. 发明专利
    • DE60326391D1
    • 2009-04-09
    • DE60326391
    • 2003-11-06
    • HONDA MOTOR CO LTD
    • YANG MING-HSUANHO JEFFREY
    • G06K9/62G06K20060101G06K9/00
    • Taking a set of unlabeled images of a collection of objects acquired under different imaging conditions, and decomposing the set into disjoint subsets corresponding to individual objects requires clustering. Appearance-based methods for clustering a set of images of 3-D objects acquired under varying illumination conditions can be based on the concept of illumination cones. A clustering problem is equivalent to finding convex polyhedral cones in the high-dimensional image space. To efficiently determine the conic structures hidden in the image data, the concept of conic affinity can be used which measures the likelihood of a pair of images belonging to the same underlying polyhedral cone. Other algorithms can be based on affinity measure based on image gradient comparisons operating directly on the image gradients by comparing the magnitudes and orientations of the image gradient.