会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明申请
    • BIOMEDICAL AND CHEMICAL SENSING WITH NANOBEAM PHOTONIC CRYSTAL CAVITIES USING OPTICAL BISTABILITY
    • 使用光学稳定性的纳米级光子晶体生物医学和化学传感
    • WO2011133670A3
    • 2012-02-23
    • PCT/US2011033251
    • 2011-04-20
    • HARVARD COLLEGEQUAN QIMINVOLLMER FRANKLONCAR MARKO
    • QUAN QIMINVOLLMER FRANKLONCAR MARKO
    • G01N33/483B82B3/00G01N21/27
    • G01N21/63G01N21/77G01N2021/7789
    • A miniature optical biosensor and biosensor array where high sensitivity for detection of biomolecular interaction does not require a fluorescent label. Non-linear frequency- shifts of optical resonators ('nanobeams') provide a digital all-or-nothing response to equilibrium binding of a biomarker to surface-immobilized bio-recognition elements, a signal suitable to identify active components in genetic and proteomic circuits, as well as toxic substances. The threshold level for the digital response is adjustable to accommodate for varying receptor affinities. A bistable cavity sensing (BCS) method can be used to track the shift of the resonance induced by the analyte more precisely than the conventional cavity sensing method, where the resolution is limited by the cavity linewidth. BCS method can be used to quantitate the concentration of the analyte, and their binding kinetics, affinities and etc.
    • 用于检测生物分子相互作用的高灵敏度的微型光学生物传感器和生物传感器阵列不需要荧光标记。 光学谐振器(“nanobeams”)的非线性频移为生物标志物与表面固定的生物识别元件的平衡结合提供了数字全无反应,适合于鉴定遗传和蛋白质组学电路中的有效成分的信号 ,以及有毒物质。 数字响应的阈值水平是可调节的,以适应不同的受体亲和力。 可以使用双稳态腔感测(BCS)方法跟传统腔感测方法更精确地跟踪由分析物引起的共振的偏移,其中分辨率受空腔线宽的限制。 BCS法可用于定量分析物的浓度及其结合动力学,亲和力等。
    • 3. 发明申请
    • METHOD AND APPARATUS FOR MEASURING AND MONITORING DISTANCES, PHYSICAL PROPERTIES, AND PHASE CHANGES OF LIGHT REFLECTED FROM A SURFACE BASED ON A RING-RESONATOR
    • 用于测量和监测基于环形谐振器的表面反射的光的距离,物理特性和相位变化的方法和装置
    • WO2006108096A3
    • 2007-10-25
    • PCT/US2006012805
    • 2006-04-06
    • HARVARD COLLEGEVOLLMER FRANKFISCHER PEER
    • VOLLMER FRANKFISCHER PEER
    • G01B9/02
    • G01N21/553G01N21/05G01N21/23G01N21/39G01N21/45G01N21/7746G01N2021/0346G01N2021/432G01N2021/7789G02B2006/1213
    • A method and apparatus for performing refractive index, birefringence and optical activity measurements of a material such as a solid, liquid, gas or thin film is disclosed. The method and apparatus can also be used to measure the properties of a reflecting surface. The disclosed apparatus has an optical ring-resonator in the form of a fiber-loop resonator, or a race-track resonator, or any waveguide-ring or other structure with a closed optical path that constitutes a cavity. A sample is introduced into the optical path of the resonator such that the light in the resonator is transmitted through the sample and relative and/or absolute shifts of the resonance frequencies or changes of the characteristics of the transmission spectrum are observed. A change in the transfer characteristics of the resonant ring, such as a shift of the resonance frequency, is related to a sample's refractive index (refractive indices) and/or change thereof. In the case of birefringence measurements, rings that have modes with two (quasi)-orthogonal (linear or circular) polarization states are used to observe the relative shifts of the resonance frequencies. A reflecting surface may be introduced in a ring resonator. The reflecting surface can be raster-scanned for the purpose of height-profiling surface features. A surface plasmon resonance may be excited and phase changes of resonant light due to binding of analytes to the reflecting surface can be determined in the frequency domain.
    • 公开了一种用于对诸如固体,液体,气体或薄膜的材料进行折射率,双折射和光学活性测量的方法和装置。 该方法和装置也可用于测量反射表面的性质。 所公开的装置具有光纤环路谐振器或赛道轨道谐振器形式的光环形谐振器,或具有构成空腔的闭合光路的任何波导环或其它结构。 将样品引入谐振器的光路中,使得谐振器中的光透射通过样品,并且观察到谐振频率的相对和/或绝对偏移或透射光谱的特性的变化。 谐振环的传递特性的变化,例如共振频率的偏移,与样品的折射率(折射率)和/或其变化有关。 在双折射测量的情况下,使用具有两个(准) - 正交(线性或圆形)偏振态的模式的环观察共振频率的相对移动。 可以在环形谐振器中引入反射表面。 为了高度分布表面特征的目的,可以对反射表面进行光栅扫描。 可以激发表面等离子体共振,并且可以在频域中确定由于分析物与反射表面的结合而引起的共振光的相变。
    • 4. 发明申请
    • METHODS AND DEVICES FOR MEASUREMENTS USING PUMP-PROBE SPECTROSCOPY IN HIGH-Q MICROCAVITIES
    • 使用高Q值微泵浦探针光谱法进行测量的方法和装置
    • WO2008034118A3
    • 2008-07-03
    • PCT/US2007078586
    • 2007-09-15
    • HARVARD COLLEGEVOLLMER FRANKTOPOLANCIK JURAJ
    • VOLLMER FRANKTOPOLANCIK JURAJ
    • H01S3/00
    • G01N21/77G01N2021/7789G02B6/29343
    • The use of optical micro cavities, high-Q resonators and slow-light structures as tools for detecting molecules and probing conformations and measuring polarizability and anisotropy of molecules and molecular assemblies using a pump-probe approach is described. Resonances are excited simultaneously or sequentially with pump and probe beams coupled to the same microcavity, so that a pump beam wavelength can be chosen to interact with molecules adsorbed to the microcavity surface, whereas a probe beam wavelength can be chosen to non-invasively measure pump-induced perturbations. The induced perturbations are manifest due to changes of resonance conditions and measured from changes in transfer characteristics or from changes of the scattering spectra of a micocavity-waveguide system. The perturbations induced by the pump beam may be due to polarizability changes, changes in molecular conformation, breakage or formation of chemical bonds, triggering of excited states, and formation of new chemical species. Furthermore, heat may be generated due to absorption of the pump beam. Furthermore, the use resonant modes with different states of polarization allows for measurements of polarizability and its anisotropy in samples interacting with the optical device.
    • 描述了使用光学微腔,高Q共振器和慢光结构作为检测分子和探测构象以及使用泵 - 探针方法测量分子和分子组装的极化性和各向异性的工具。 谐振同时或顺序地与耦合到相同微腔的泵浦光束和探针光束激发,使得可以选择泵浦波长与吸附到微腔表面的分子相互作用,而可以选择探测光束波长以非侵入式地测量泵浦 诱发的扰动。 由于谐振条件的变化以及由传输特性的变化或微腔 - 波导系统的散射光谱的变化来测量,引起的扰动是显而易见的。 泵浦光束引起的干扰可能是由于极化率的变化,分子构象的变化,化学键的断裂或形成,激发态的触发以及新化学物质的形成。 此外,由于吸收泵浦光束可能会产生热量。 此外,具有不同偏振状态的使用谐振模式允许测量与光学器件相互作用的样本中的极化率及其各向异性。
    • 5. 发明申请
    • METHODS, MATERIALS AND DEVICES FOR LIGHT MANIPULATION WITH ORIENTED MOLECULAR ASSEMBLIES IN MICRONSCALE PHOTONIC CIRCUIT ELEMENTS WITH HIGH-Q OR SLOW LIGHT
    • 用于在具有高Q或慢光的微型光电元件中用于具有定向分子组装的光学操作的方法,材料和装置
    • WO2007134177A3
    • 2008-04-10
    • PCT/US2007068683
    • 2007-05-10
    • HARVARD COLLEGEVOLLMER FRANKTOPOLANCIK JURAJ
    • VOLLMER FRANKTOPOLANCIK JURAJ
    • G02F1/03G02F1/07
    • G02B6/1225G02F1/0126G02F1/3511G02F2202/32G02F2203/15
    • An optical device that comprises an input waveguide, an output waveguide, a high-Q resonant or photonic structure that generate slow light connected to the input waveguide and the output waveguide, and an interface, surface or mode volume modified with at least one material formed from a single molecule, an ordered aggregate of molecules or nanostructures. The optical device may include more than one input waveguide, output waveguide, high-Q resonant or photonic structure and interface, surface or mode volume. The high-Q resonant or photonic structure may comprise at least one selected from the group of: microspherical cavities, microtoroidal cavities, microring-cavities, photonic crystal defect cavities, fabry-perot cavities, photonic crystal waveguides. The ordered aggregate of molecules or nanostructures comprises at least one selected from the group of: organic or biological monolayers, biological complexes, cell membranes, bacterial membranes, virus assemblies, nanowire or nanotube assemblies, quantum-dot assemblies, one or more assemblies containing one ore more rhodopsins, green fluorescence proteins, diarylethers, lipid bilayers, chloroplasts or components, mitochondria or components, cellular or bacterial organelles or components, bacterial S-layers, photochromic molecules. Further, the molecular aggregate may exhibit a photoinduced response.
    • 一种包括输入波导,输出波导,产生连接到输入波导和输出波导的慢光的高Q谐振或光子结构的光学装置,以及形成有至少一种材料的界面,表面或模式体积 来自单个分子,分子或纳米结构的有序聚集体。 光学器件可以包括多于一个的输入波导,输出波导,高Q谐振或光子结构以及界面,表面或模式体积。 高Q谐振或光子结构可以包括选自以下的组中的至少一个:微球腔,微孔腔,微环腔,光子晶体缺陷腔,fabry-perot腔,光子晶体波导。 分子或纳米结构的有序聚集体包括选自以下组中的至少一种:有机或生物单层,生物复合物,细胞膜,细菌膜,病毒组件,纳米线或纳米管组件,量子点组件,一个或多个包含一个 更多的视紫红质,绿色荧光蛋白,二芳基醚,脂质双层,叶绿体或组分,线粒体或组分,细胞或细菌细胞器或组分,细菌S层,光致变色分子。 此外,分子聚集体可以表现出光诱导的反应。