会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Method and apparatus of background suppression in MR imaging using spin locking
    • 使用自旋锁定的MR成像中背景抑制的方法和装置
    • US07064545B2
    • 2006-06-20
    • US10711169
    • 2004-08-30
    • Gregory G. ZaharchukJean H. Brittain
    • Gregory G. ZaharchukJean H. Brittain
    • G01V3/00
    • G01R33/563
    • The present invention is directed to a method and system of tissue or background suppression for the acquisition of image data from blood flow or tissue perfusion. Background suppression with minimal effects upon inflowing spins is achieved through a series of spin locking low level RF pulses that cause adiabatic demagnetization of tissue with a relaxation time T1-rho that is intermediate between T1 and T2 relaxation times. In this regard, the effective transverse magnetization of static tissue resulting from the application of a series of low level RF pulses is reduced and, with the spin locking, longitudinal magnetization regrowth is minimized. As such, inflowing spins to an imaging volume may be directly imaged with significant background tissue suppression. The present invention is particularly applicable to time-of-flight MRA and MR perfusion imaging.
    • 本发明涉及用于从血流或组织灌注获取图像数据的组织或背景抑制的方法和系统。 通过一系列自旋锁定低水平射频脉冲来实现对流入旋转影响最小的背景抑制,其使得在T1和T2弛豫时间之间的弛豫时间T1-rho导致组织绝热退磁。 在这方面,由于施加一系列低电平RF脉冲导致的静电组织的有效横向磁化强度降低,并且随着自旋锁定,纵向磁化强度再生长被最小化。 这样,流入成像体积的流动可以直接用显着的背景组织抑制成像。 本发明特别适用于飞行时间MRA和MR灌注成像。
    • 4. 发明授权
    • Moving table MRI with frequency-encoding in the z-direction
    • 在z方向进行频率编码的移动表MRI
    • US06897655B2
    • 2005-05-24
    • US10235454
    • 2002-09-04
    • Jean H. BrittainJohn M. Pauly
    • Jean H. BrittainJohn M. Pauly
    • G01R33/28G01R33/54G01R33/563G01V3/00A61B5/05
    • G01R33/28G01R33/54G01R33/56375G01R33/56383
    • A system and method are disclosed using continuous table motion while acquiring data to reconstruct MR images across a large FOV without significant slab-boundary artifacts that reduces acquisition time. At each table position, full z-encoding data are acquired for a subset of the transverse k-space data. The table is moved through a number of positions over the desired FOV and MR data are acquired over the plurality of table positions. Since full z-data are acquired for each slab, the data can be Fourier transformed in z, interpolated, sorted, and aligned to match anatomic z locations. The fully sampled and aligned data is then Fourier transformed in remaining dimension(s) to reconstruct the final image that is free of slab-boundary artifacts.
    • 公开了使用连续表格运动的系统和方法,同时获取数据以重建跨越大FOV的MR图像,而没有减少获取时间的显着的平板边界伪像。 在每个表位置,对于横向k空间数据的子集获取完整的z编码数据。 该表移动通过所需FOV的多个位置,并且在多个表位置上获取MR数据。 由于为每个平板获取完整的z数据,所以数据可以在z中进行傅立叶变换,内插,排序和对齐以匹配解剖z位置。 完全采样和对齐的数据然后在剩余维度中进行傅里叶变换,以重建没有平板边界伪像的最终图像。
    • 7. 发明授权
    • Homodyne reconstruction of water and fat images based on iterative decomposition of MRI signals
    • 基于MRI信号的迭代分解的水和脂肪图像的零差重建
    • US07298144B2
    • 2007-11-20
    • US11253825
    • 2005-10-18
    • Scott B. ReederBrian A. HargreavesJean H. Brittain
    • Scott B. ReederBrian A. HargreavesJean H. Brittain
    • G01V3/00
    • G01R33/4828G01R33/5608
    • Homodyne image reconstruction is combined with an iterative decomposition of water and fat from MR signals obtained from a partial k-space signal acquisition in order to maximize the resolution of calculated water and fat images. The method includes asymmetrical acquisition of under-sampled MRI data, obtaining low resolution images, and then estimating a magnetic field map and phase maps of water and fat image signals from the low resolution images. The acquired data is again filtered and Fourier transformed to obtain an estimate of combined fat and water signals using the estimated magnetic field map and phase maps. Water and fat images are then estimated from which phases of the water and fat images are determined. The real parts of the water and fat images are then used in calculating water and fat images using a homodyne process.
    • 将零差图像重建与从部分k空间信号采集获得的MR信号的水和脂肪的迭代分解相结合,以便最大化计算出的水和脂肪图像的分辨率。 该方法包括对采样不全的MRI数据进行不对称采集,获得低分辨率图像,然后从低分辨率图像中估计出水分和脂肪图像信号的磁场图和相位图。 所获取的数据再次被滤波和傅里叶变换,以使用估计的磁场图和相位图来获得组合的脂肪和水信号的估计。 然后估计水和脂肪图像,从而确定水和脂肪图像的哪个阶段。 然后将水和脂肪图像的真实部分用于使用零差过程计算水和脂肪图像。