会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Laser leveling system for setting pipes
    • 用于设置管道的激光校平系统
    • US5774211A
    • 1998-06-30
    • US627430
    • 1996-04-04
    • Fumio OhtomoKunihiro HayashiJun-ichi KodairaHiroyuki NishizawaKen-ichiro YoshinoSatoshi HiranoYohei Ogawa
    • Fumio OhtomoKunihiro HayashiJun-ichi KodairaHiroyuki NishizawaKen-ichiro YoshinoSatoshi HiranoYohei Ogawa
    • G01C15/00G01B11/26
    • G01C15/002
    • The present invention provides an object reflector detection system, in which laser beam is emitted toward an object reflector and reflection light beam is received to detect presence or absence and position of the object reflector, whereby there are provided a laser beam emitter and a reflection light beam detector, and further a laser beam emitter for emitting polarized irradiation light beam toward the object reflector, and a reflection light beam detector for detecting polarized reflection light beam from the object reflector, and the reflection light beam detector having a first detection means for detecting polarized reflection light beam from the object reflector, a second detection means for detecting polarized light beam different from the polarized reflection light beam from the object reflector and a reflection light beam detection circuit for identifying the object reflector based on comparison between output of the first detection means and output of the second detection means.
    • 本发明提供了一种目标反射体检测系统,其中激光束朝向物体反射器发射,并且接收反射光束以检测目标反射体的存在或不存在和位置,由此设置有激光束发射器和反射光 光束检测器,以及用于向物体反射器发射偏振照射光束的激光束发射器,以及用于检测来自对象反射体的偏振反射光束的反射光束检测器,以及具有第一检测装置的反射光束检测器, 来自对象反射体的偏振反射光束,用于检测不同于来自对象反射体的偏振反射光束的偏振光束的第二检测装置和用于基于第一检测器的输出之间的比较来识别对象反射器的反射光束检测电路 第二次检测m的装置和输出 没有
    • 2. 发明授权
    • Object reflector detection system
    • 目标反射体检测系统
    • US5612781A
    • 1997-03-18
    • US302051
    • 1994-09-07
    • Fumio OhtomoKunihiro HayashiJun-ichi KodairaHiroyuki NishizawaKen-ichiro YoshinoSatoshi HiranoYohei Ogawa
    • Fumio OhtomoKunihiro HayashiJun-ichi KodairaHiroyuki NishizawaKen-ichiro YoshinoSatoshi HiranoYohei Ogawa
    • G01C15/00G01B11/26G01C3/08
    • G01C15/002
    • The present invention provides an object reflector detection system, in which laser beam is emitted toward an object reflector and reflection light beam is received to detect presence or absence and position of the object reflector, whereby there are provided a laser beam emitter and a reflection light beam detector, and further a laser beam emitter for emitting polarized irradiation light beam toward the object reflector, and a reflection light beam detector for detecting polarized reflection light beam from the object reflector, and the reflection light beam detector having a first detection means for detecting polarized reflection light beam from the object reflector, a second detection means for detecting polarized light beam different from the polarized reflection light beam from the object reflector and a reflection light beam detection circuit for identifying the object reflector based on comparison between output of the first detection means and output of the second detection means.
    • 本发明提供了一种目标反射体检测系统,其中激光束朝向物体反射器发射,并且接收反射光束以检测目标反射体的存在或不存在和位置,由此设置有激光束发射器和反射光 光束检测器,以及用于向物体反射器发射偏振照射光束的激光束发射器,以及用于检测来自对象反射体的偏振反射光束的反射光束检测器,以及具有第一检测装置的反射光束检测器, 来自对象反射体的偏振反射光束,用于检测不同于来自对象反射体的偏振反射光束的偏振光束的第二检测装置和用于基于第一检测器的输出之间的比较来识别对象反射器的反射光束检测电路 第二次检测m的装置和输出 没有
    • 6. 发明授权
    • System for radiating a reference laser beam and utilizing GPS units for installing an article
    • 用于照射参考激光束并利用GPS装置安装物品的系统
    • US06710319B2
    • 2004-03-23
    • US09802067
    • 2001-03-08
    • Fumio OhtomoSatoshi HiranoRay O'ConnorKunihiro Hayashi
    • Fumio OhtomoSatoshi HiranoRay O'ConnorKunihiro Hayashi
    • G01C2124
    • G01C15/002
    • A novel system for facilitating the work for setting the horizontal direction of a guide laser beam is disclosed. The guide laser beam (P) can be radiated in vertical and lateral directions from the horizontal direction as a reference by a guide laser beam radiator (20). The reference horizontal direction position of the guide laser beam radiator (20) is detected by a first GPS unit (75). A pole (81) has a second GPS unit (76) for detecting a horizontal position. A reference horizontal direction position of the guide laser radiator (20) is detected by the first GPS unit (75). A first horizontal direction position is detected by the second GPS unit (76) of the pole (81) set up at a first position (83), thereby specifying the direction Z1 in which the guide laser beam (P) is to be radiated from the reference horizontal direction position as an origin. A second horizontal direction position is detected by the second GPS unit (76) of the pole (81) set up at a second position (80) so as to radiate the guide laser beam (P) on the pole (81), thus specifying the actual direction in which the guide laser beam (P) is radiated from the reference horizontal direction position as an origin. The angle (&phgr;) that the direction in which the guide laser beam (P) is to be radiated forms to the actual direction (Z2) in which the guide laser beam (P) is radiated is determined. Based on the angle &phgr;, the direction Z2 in which the guide laser beam (P) is actually radiated is changed to the direction Z1 in which the guide laser beam (P) is to be radiated.
    • 公开了一种便于设置引导激光束的水平方向的工作的新型系统。 引导激光束(P)可以通过引导激光束辐射器(20)作为参考从水平方向沿垂直和横向方向辐射。 引导激光束散热器(20)的参考水平方向位置由第一GPS单元(75)检测。 杆(81)具有用于检测水平位置的第二GPS单元(76)。 引导激光辐射器(20)的参考水平方向位置由第一GPS单元(75)检测。 由设置在第一位置(83)的极点(81)的第二GPS单元(76)检测第一水平方向位置,从而指定要从其中辐射导向激光束(P)的方向Z1 参考水平方向位置为原点。 通过在第二位置(80)设置的极(81)的第二GPS单元(76)检测第二水平方向位置,以便将引导激光束(P)辐射在极(81)上,从而指定 导向激光束(P)从基准水平方向位置发射的实际方向为原点。 确定导向激光束(P)要被辐射的方向与形成导向激光束(P)的实际方向(Z2)的角度(phi)。 基于角度phi,将导向激光束(P)实际照射的方向Z2变更为要照射导向激光束(P)的方向Z1。
    • 7. 发明授权
    • Construction equipment control system
    • 施工设备控制系统
    • US6068060A
    • 2000-05-30
    • US259484
    • 1999-02-26
    • Fumio OhtomoSatoshi HiranoKunihiro Hayashi
    • Fumio OhtomoSatoshi HiranoKunihiro Hayashi
    • E02F9/20G01C5/00G01C15/00E02F3/76
    • G01C15/004
    • The present invention provides a construction equipment control system, comprising a rotary laser irradiating system for forming a laser beam reference plane by the laser beam and capable to tilt the laser beam reference plane, a level sensor installed on a ground leveling tool of construction equipment and for performing photodetection of the laser beam to give instruction on a height of the ground leveling tool, a GPS receiving system for detecting a position of the construction equipment, and a control device for controlling a gradient of the laser beam reference plane formed by the rotary laser irradiating system based on the detection result of the position of the construction equipment by the GPS receiving system, whereby ground leveling operation for a horizontal surface, an inclined surface and a curved surface can be performed by measuring the position of the construction equipment at real time and by controlling the height of the ground leveling tool based on working data.
    • 本发明提供一种施工设备控制系统,其包括用于通过激光束形成激光束参考平面并能够倾斜激光束参考平面的旋转激光照射系统,安装在施工设备的地面平整工具上的液位传感器, 用于执行激光束的光电检测,以指导地面平整工具的高度,用于检测施工设备的位置的GPS接收系统,以及用于控制由旋转器形成的激光束参考平面的梯度的控制装置 基于GPS接收系统对施工设备的位置的检测结果的激光照射系统,由此可以通过实际测量施工设备的位置来进行水平面,倾斜面和曲面的平整操作 并根据工作数据控制地面平整工具的高度。
    • 9. 发明授权
    • Position measuring instrument
    • 位置测量仪
    • US07515256B2
    • 2009-04-07
    • US10686858
    • 2003-10-16
    • Fumio OhtomoKazuki OsaragiKunihiro Hayashi
    • Fumio OhtomoKazuki OsaragiKunihiro Hayashi
    • G01C3/08
    • G01S7/4817G01C15/002G01S7/006G01S7/4813G01S7/497G01S17/023G01S17/42G01S17/89
    • The present invention relates to a position measuring instrument for, for example, scanning a photoreceiver as a target to be measured, and more particularly to an automatic position detection instrument capable of emitting distance measuring light and tracking light while turning directions of the distance measuring light and the tracking light so that three-dimensional measurement of a light receiving position is performed, and further capable of transmitting measured data to a photoreceiver provided on a target. A light source unit emits measuring light, and then a light receiving unit receives its reflected light. A scanning means emits measuring light in a scanning direction, and leads its reflected light to the light receiving unit. An angle detector detects a rotational position of the scanning means. The measuring light includes distance measuring light expanding in a fan-shaped manner. Its reflected light can be used to measure a distance to a reflector.
    • 本发明涉及一种用于例如扫描作为待测对象的光接收器的位置测量仪器,更具体地说,涉及一种能够在转动距离测量光的方向的同时发射距离测量光和跟踪光的自动位置检测仪器 和跟踪光,从而执行光接收位置的三维测量,并且还能够将测量数据发送到设置在目标上的光接收器。 光源单元发射测量光,然后光接收单元接收其反射光。 扫描装置沿扫描方向发射测量光,并将其反射光引导到光接收单元。 角度检测器检测扫描装置的旋转位置。 测量光包括以扇形方式扩展的距离测量光。 其反射光可用于测量到反射器的距离。
    • 10. 发明申请
    • Rotary laser apparatus
    • 旋转激光装置
    • US20060050345A1
    • 2006-03-09
    • US11213776
    • 2005-08-25
    • Fumio OhtomoKunihiro Hayashi
    • Fumio OhtomoKunihiro Hayashi
    • G02B26/08
    • G01C15/004
    • A rotary laser apparatus includes a light-projection section configured to irradiate at least two fan-shaped beams extending in a fan-shaped form in a direction orthogonal to a rotary axis. The light-projecting section includes a laser beam source for generating a laser beam in a direction of the rotary axis, and a rotation-irradiating section configured for irradiating the laser beam from the laser beam source in directions orthogonal to the rotary axis. The rotation-irradiating section includes a plurality of penta prisms and a beam splitter. The plurality of the penta prisms are arranged in the direction of the rotary axis depending upon the number of the fan-shaped beams such that light-emitting directions of the respective penta prisms differ from each other or one another, and the beam splitter is configured to the laser beam as required the penta prism arranged above.
    • 一种旋转式激光装置,具备配置成沿与旋转轴正交的方向照射扇形的至少两个扇形光束的光投射部。 该投光部包括用于在旋转轴的方向上产生激光的激光束源,以及被配置为在与旋转轴正交的方向上照射来自激光束源的激光束的旋转照射部。 旋转照射部包括多个五棱镜和分束器。 多个五棱镜根据扇形光束的数量沿旋转轴线的方向布置,使得各个棱镜的发光方向彼此不同,并且分束器被配置 根据需要将激光束设置在上面布置的五棱镜。