会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 7. 发明申请
    • Kernels and methods for selecting kernels for use in learning machines
    • 内核和选择用于学习机器的内核的方法
    • US20050071300A1
    • 2005-03-31
    • US10477078
    • 2002-05-07
    • Peter BartlettAndre ElisseeffBernard Schoelkopf
    • Peter BartlettAndre ElisseeffBernard Schoelkopf
    • G06F7/00G06F15/18G06F17/00G06F19/24G06K9/00G06K9/62
    • G06K9/623G06F19/24G06K9/6215G06K9/6248G06K9/6269G06N99/005G06Q20/042
    • Kernels (206) for use in learning machines, such as support vector machines, and methods are provided for selection and construction of such kernels are controlled by the nature of the data to be analyzed (203). In particular, data which may possess characteristics such as structure, for example DNA sequences, documents; graphs, signals, such as ECG signals and microarray expression profiles; spectra; images; spatio-temporal data; and relational data, and which may possess invariances or noise components that can interfere with the ability to accurately extract the desired information. Where structured datasets are analyzed, locational kernels are defined to provide measures of similarity among data points (210). The locational kernels are then combined to generate the decision function, or kernel. Where invariance transformations or noise is present, tangent vectors are defined to identify relationships between the invariance or noise and the data points (222). A covariance matrix is formed using the tangent vectors, then used in generation of the kernel.
    • 提供用于学习机器(例如支持向量机)和方法的内核(206),用于选择和构建这样的内核,由所要分析的数据的性质来控制(203)。 特别地,可以具有诸如结构的特征的数据,例如DNA序列,文献; 图形,信号,如ECG信号和微阵列表达谱; 光谱; 图片; 时空数据; 和关系数据,并且其可以具有可能干扰准确地提取所需信息的能力的不变性或噪声成分。 在分析结构化数据集的情况下,定位内核以提供数据点之间的相似性度量(210)。 然后组合位置内核以生成决策函数或内核。 在存在不变性变换或噪声的情况下,定义向量以识别不变性或噪声与数据点之间的关系(222)。 使用切向矢量形成协方差矩阵,然后用于生成内核。
    • 8. 发明授权
    • Method for feature selection and for evaluating features identified as significant for classifying data
    • 用于特征选择和评估对分类数据有重要意义的特征的方法
    • US07970718B2
    • 2011-06-28
    • US12890705
    • 2010-09-26
    • Isabelle GuyonAndre ElisseeffBernhard SchoelkopfJason Aaron Edward WestonFernando Perez-Cruz
    • Isabelle GuyonAndre ElisseeffBernhard SchoelkopfJason Aaron Edward WestonFernando Perez-Cruz
    • G06F15/18
    • G06F19/24G06F19/20G06K9/6231
    • A group of features that has been identified as “significant” in being able to separate data into classes is evaluated using a support vector machine which separates the dataset into classes one feature at a time. After separation, an extremal margin value is assigned to each feature based on the distance between the lowest feature value in the first class and the highest feature value in the second class. Separately, extremal margin values are calculated for a normal distribution within a large number of randomly drawn example sets for the two classes to determine the number of examples within the normal distribution that would have a specified extremal margin value. Using p-values calculated for the normal distribution, a desired p-value is selected. The specified extremal margin value corresponding to the selected p-value is compared to the calculated extremal margin values for the group of features. The features in the group that have a calculated extremal margin value less than the specified margin value are labeled as falsely significant.
    • 使用支持向量机将资源分为类别的“特征”组合进行评估,该支持向量机将数据集一次分为一个特征。 分离后,基于第一类中最低特征值与第二类中最高特征值之间的距离,为每个特征分配极值边缘值。 另外,对于两个类别的大量随机绘制的示例集合中的正态分布计算极值边界值,以确定具有指定的极值边界值的正态分布内的示例的数量。 使用为正态分布计算的p值,选择所需的p值。 对应于所选择的p值的指定极值余量值与所计算的特征组的极值边际值进行比较。 计算的极值余量值小于指定余量值的组中的特征被标记为错误显着。