会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 4. 发明授权
    • Pointing compensation system for spacecraft instruments
    • 飞船仪器指点补偿系统
    • US4687161A
    • 1987-08-18
    • US802121
    • 1985-09-30
    • Carl T. PlesciaDonald W. Gamble
    • Carl T. PlesciaDonald W. Gamble
    • G05D1/08B64G1/36
    • G05D1/0883
    • A closed loop system reduces pointing errors in one or more spacecraft instruments. Associated with each instrument is a electronics package (3) for commanding motion in that instrument and a pointing control system (5) for imparting motion in that instrument in response to a command (4) from the commanding package (3). Spacecraft motion compensation logic (25) compensates for instrument pointing errors caused by instrument-motion-induced spacecraft motion. Any finite number of instruments can be so compensated, by providing each pointing control system (5) and each commanding package (3), for the instruments desired to be compensated, with a link to the spacecraft motion compensation logic (25). The spacecraft motion compensation logic (25) is an electronic manifestation of the algebraic negative of a model of the dynamics of motion of the spacecraft. An example of a suitable model, and computer-simulated results, are presented.
    • 闭环系统减少了一个或多个航天器仪器中的指示误差。 与每个仪器相关联的是用于在该仪器中指令运动的电子组件(3)和用于响应于来自命令包(3)的命令(4))在该仪器中传递运动的指点控制系统(5)。 航天器运动补偿逻辑(25)补偿由仪器运动引起的航天器运动引起的仪器指向误差。 通过提供每个指向控制系统(5)和每个命令包(3),对于希望被补偿的仪器,通过与航天器运动补偿逻辑(25)的链接,可以对任何有限数量的仪器进行补偿。 航天器运动补偿逻辑(25)是航天器运动动力学模型的代数负的电子表现。 提出了一个合适的模型和计算机模拟结果的例子。
    • 5. 发明授权
    • Spacecraft camera image registration
    • 航天器相机图像注册
    • US4688091A
    • 1987-08-18
    • US860373
    • 1986-05-06
    • Ahmed A. KamelDonald W. GraulFred N. T. ChanDonald W. Gamble
    • Ahmed A. KamelDonald W. GraulFred N. T. ChanDonald W. Gamble
    • B64G1/66B64G1/22G01C21/20G01C21/24G01J1/42G03B15/00G03B17/00H04N5/232H04N7/01
    • G01C21/20H04N5/232
    • A system for achieving spacecraft camera (1, 2) image registration comprises a portion external to the spacecraft and an image motion compensation system (IMCS) portion onboard the spacecraft. Within the IMCS, a computer (38) calculates an image registration compensation signal (60) which is sent to the scan control loops (84, 88, 94, 98) of the onboard cameras (1, 2). At the location external to the spacecraft, the long-term orbital and attitude perturbations on the spacecraft are modeled. Coefficients (K, A) from this model are periodically sent to the onboard computer (38) by means of a command unit (39). The coefficients (K, A) take into account observations of stars and landmarks made by the spacecraft cameras (1, 2) themselves. The computer (38) takes as inputs the updated coefficients (K, A) plus synchronization information indicating the mirror position (AZ, EL) of each of the spacecraft cameras (1, 2), operating mode, and starting and stopping status of the scan lines generated by these cameras (1, 2), and generates in response thereto the image registration compensation signal (60). The sources of periodic thermal errors on the spacecraft are discussed. The system is checked by calculating "measurement residuals", the difference between the landmark and star locations predicted at the external location and the landmark and star locations as measured by the spacecraft cameras (1, 2).
    • 用于实现航天器相机(1,2)图像配准的系统包括航天器外部的部分和飞船上的图像运动补偿系统(IMCS)部分。 在IMCS内,计算机(38)计算发送到车载摄像机(1,2)的扫描控制回路(84,88,94,98)的图像配准补偿信号(60)。 在航天器外部的位置,对航天器的长期轨道和姿态扰动进行了建模。 来自该模型的系数(K,A)通过命令单元(39)周期性地发送到车载计算机(38)。 系数(K,A)考虑到由航天器相机(1,2)自身制成的星星和地标的观测。 计算机(38)将更新的系数(K,A)加上指示每个航天器相机(1,2)的镜像位置(AZ,EL)的同步信息,操作模式和起始和停止状态作为输入 由这些摄像机(1,2)生成的扫描线,并且响应于此生成图像配准补偿信号(60)。 讨论了航天器周期性热误差的来源。 通过计算“测量残差”来检查系统,由外部位置预测的地标和星形位置之间的差异以及由航天器相机(1,2)测量的地标和星形位置。