会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Pointing compensation system for spacecraft instruments
    • 飞船仪器指点补偿系统
    • US4687161A
    • 1987-08-18
    • US802121
    • 1985-09-30
    • Carl T. PlesciaDonald W. Gamble
    • Carl T. PlesciaDonald W. Gamble
    • G05D1/08B64G1/36
    • G05D1/0883
    • A closed loop system reduces pointing errors in one or more spacecraft instruments. Associated with each instrument is a electronics package (3) for commanding motion in that instrument and a pointing control system (5) for imparting motion in that instrument in response to a command (4) from the commanding package (3). Spacecraft motion compensation logic (25) compensates for instrument pointing errors caused by instrument-motion-induced spacecraft motion. Any finite number of instruments can be so compensated, by providing each pointing control system (5) and each commanding package (3), for the instruments desired to be compensated, with a link to the spacecraft motion compensation logic (25). The spacecraft motion compensation logic (25) is an electronic manifestation of the algebraic negative of a model of the dynamics of motion of the spacecraft. An example of a suitable model, and computer-simulated results, are presented.
    • 闭环系统减少了一个或多个航天器仪器中的指示误差。 与每个仪器相关联的是用于在该仪器中指令运动的电子组件(3)和用于响应于来自命令包(3)的命令(4))在该仪器中传递运动的指点控制系统(5)。 航天器运动补偿逻辑(25)补偿由仪器运动引起的航天器运动引起的仪器指向误差。 通过提供每个指向控制系统(5)和每个命令包(3),对于希望被补偿的仪器,通过与航天器运动补偿逻辑(25)的链接,可以对任何有限数量的仪器进行补偿。 航天器运动补偿逻辑(25)是航天器运动动力学模型的代数负的电子表现。 提出了一个合适的模型和计算机模拟结果的例子。
    • 3. 发明授权
    • Spacecraft East/West orbit control during a North or South
stationkeeping maneuver
    • 航天器东/西轨道控制在北或南驻守机动
    • US5400252A
    • 1995-03-21
    • US994769
    • 1992-12-22
    • Fatima KazimiLisa K. WhiteCarl T. Plescia
    • Fatima KazimiLisa K. WhiteCarl T. Plescia
    • B64G1/26G05D1/08G06F15/50
    • G05D1/0883B64G1/26
    • A 3-axis stabilized spacecraft has primary and secondary attitude control thruster strings, thrusters in each string exerting roll, pitch and yaw torques. The primary and secondary thruster strings are similar and exhibit paired thrusters oriented on opposite sides of an East/West axis passing through the spacecraft. A stationkeeping input energizes the North or South thrusters to cause a maneuver of the spacecraft along a North/South axis, the thrusters effecting a perturbation in the spacecraft's attitude. An attitude control system energizes at least a primary string thruster to counteract the attitude perturbation, the thruster being oriented so as also to cause a change in the spacecraft's East/West orbit velocity. A processor is responsive to the change in East/West orbit velocity reaching a deadband limit value to deactivate the primary string thruster and to activate the secondary string thruster which exhibits a similar torque effect on the spacecraft as the primary string thruster but is oriented so as to cause an oppositely directed change in the spacecraft's East/West orbit velocity. The spacecraft further includes a system for enabling all primary and secondary thrusters that exert a force in one direction (i.e. East or West) for attitude control during limit cycling and during the North or South stationkeeping maneuver. The like directed thrusters both provide attitude stabilization and cause a predetermined change in orbit velocity.
    • 三轴稳定的航天器具有初级和次级姿态控制推进器串,每个弦中的推进器施加滚动,俯仰和偏航扭矩。 主推进器和次级推进器串是相似的,并且展示配对的推进器,定向在通过航天器的东/西轴的相对侧上。 驻守输入人员激励北部或南部推进器,以使航天器沿着北/南轴线的机动,推进器在航天器的态度上产生扰动。 姿态控制系统激励至少一个主弦推进器以抵消姿态扰动,推进器被定向以便引起航天器的东/西轨道速度的变化。 处理器响应于东/西轨道速度的变化达到死区极限值,以停用主弦推进器并且激活二次弦推进器,其与主弦推进器呈现与航天器类似的扭矩效应,但是被定向成 导致航天器的东/西轨道速度发生相反的变化。 航天器进一步包括一个系统,用于使所有主要和次要推进器能够在一个方向(即东部或西部)施加力,用于在极限循环期间以及在北部或南部驻扎操纵期间进行姿态控制。 类似的定向推进器都提供姿态稳定性并导致轨道速度的预定变化。