会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • Ensembles of neural networks with different input sets
    • 具有不同输入集的神经网络的集合
    • US20070011114A1
    • 2007-01-11
    • US11165892
    • 2005-06-24
    • Dingding ChenJohn QuireinHarry SmithSyed HamidJeffery Grable
    • Dingding ChenJohn QuireinHarry SmithSyed HamidJeffery Grable
    • G06N3/02
    • G06N3/0454G06N3/086
    • Methods of creating and using robust neural network ensembles are disclosed. Some embodiments take the form of computer-based methods that comprise receiving a set of available inputs; receiving training data; training at least one neural network for each of at least two different subsets of the set of available inputs; and providing at least two trained neural networks having different subsets of the available inputs as components of a neural network ensemble configured to transform the available inputs into at least one output. The neural network ensemble may be applied as a log synthesis method that comprises: receiving a set of downhole logs; applying a first subset of downhole logs to a first neural network to obtain an estimated log; applying a second, different subset of the downhole logs to a second neural network to obtain an estimated log; and combining the estimated logs to obtain a synthetic log.
    • 公开了创建和使用鲁棒神经网络集合的方法。 一些实施例采用基于计算机的方法的形式,其包括接收一组可用输入; 接收培训数据; 为所述一组可用输入中的至少两个不同子集中的每一个训练至少一个神经网络; 以及提供至少两个经训练的神经网络,其具有可用输入的不同子集,作为被配置为将可用输入转换成至少一个输出的神经网络集合的组件。 神经网络集合可以作为对数合成方法应用,包括:接收一组井下测井; 将第一个井下日志子集应用于第一神经网络以获得估计的日志; 将第二个不同的井下日志子集应用于第二神经网络以获得估计的对数; 并组合估计的日志以获得合成日志。
    • 2. 发明申请
    • Well logging with reduced usage of radioisotopic sources
    • 测井记录减少放射性同位素来源的使用
    • US20070011115A1
    • 2007-01-11
    • US11270284
    • 2005-11-09
    • Harry SmithJohn QuireinJeffery GrableDingding Chen
    • Harry SmithJohn QuireinJeffery GrableDingding Chen
    • G06N3/02
    • G06N3/086G06N3/0454
    • Logging systems and methods are disclosed to reduce usage of radioisotopic sources. Some embodiments comprise collecting at least one output log of a training well bore from measurements with a radioisotopic source; collecting at least one input log of the training well bore from measurements by a non-radioisotopic logging tool; training a neural network to predict the output log from the at least one input log; collecting at least one input log of a development well bore from measurements by the non-radioisotopic logging tool; and processing the at least one input log of the development well bore to synthesize at least one output log of the development well bore. The output logs may include formation density and neutron porosity logs.
    • 公开了记录系统和方法以减少放射性同位素源的使用。 一些实施例包括从具有放射性同位素源的测量中收集训练井的至少一个输出日志; 从非放射性同位素测井工具的测量中收集训练井的至少一个输入日志; 训练神经网络以从至少一个输入日志预测输出日志; 从非放射性同位素测井工具的测量中收集开发井眼的至少一个输入日志; 以及处理所述开发井的所述至少一个输入对数以合成所述显影井的至少一个输出对数。 输出原木可包括地层密度和中子孔隙度日志。
    • 3. 发明申请
    • Method of reservoir characterization and delineation based on observations of displacements at the earth's surface
    • 基于地球表面位移观测的储层表征和描绘方法
    • US20070124079A1
    • 2007-05-31
    • US11288826
    • 2005-11-29
    • Ali MeseSyed HamidDingding ChenHarry SmithJohn HowardNeal Skinner
    • Ali MeseSyed HamidDingding ChenHarry SmithJohn HowardNeal Skinner
    • G01N15/08G01V1/40
    • G01V11/00
    • Reservoir characterization based on observations of displacements at the earth's surface. One method of characterizing a reservoir includes the steps of: detecting a response of the reservoir to a stimulus, the stimulus causing a pressure change in the reservoir; and determining a characteristic of the reservoir from the response to the stimulus. The response may be the pressure change which varies periodically over time, or a set of displacements of a surface of the earth. In another example, a method includes the steps of: detecting a set of displacements of the earth's surface corresponding to a pressure change in the reservoir; and determining a characteristic of the reservoir from the surface displacements. In yet another example, a method includes the steps of: detecting a set of displacements of the earth's surface corresponding to a change in volume of the reservoir; and determining a characteristic of the reservoir from the surface displacements.
    • 基于地球表面位移观测的油藏特征。 表征储层的一种方法包括以下步骤:检测储层对刺激的响应,所述刺激导致储层中的压力变化; 以及从所述刺激的响应确定所述储层的特性。 响应可以是随时间周期性地变化的压力变化或地球表面的一组位移。 在另一示例中,一种方法包括以下步骤:检测对应于储层中的压力变化的地球表面的一组位移; 以及从表面位移确定储层的特征。 在又一示例中,一种方法包括以下步骤:检测对应于储层体积变化的地球表面的一组位移; 以及从表面位移确定储层的特征。
    • 5. 发明授权
    • Method of reservoir characterization and delineation based on observations of displacements at the earth's surface
    • 基于地球表面位移观测的储层表征和描绘方法
    • US08355873B2
    • 2013-01-15
    • US11288826
    • 2005-11-29
    • Ali MeseSyed HamidDingding ChenHarry D. Smith, Jr.John HowardNeal Skinner
    • Ali MeseSyed HamidDingding ChenHarry D. Smith, Jr.John HowardNeal Skinner
    • G01V9/00
    • G01V11/00
    • Reservoir characterization based on observations of displacements at the earth's surface. One method of characterizing a reservoir includes the steps of: detecting a response of the reservoir to a stimulus, the stimulus causing a pressure change in the reservoir; and determining a characteristic of the reservoir from the response to the stimulus. The response may be the pressure change which varies periodically over time, or a set of displacements of a surface of the earth. In another example, a method includes the steps of: detecting a set of displacements of the earth's surface corresponding to a pressure change in the reservoir; and determining a characteristic of the reservoir from the surface displacements. In yet another example, a method includes the steps of: detecting a set of displacements of the earth's surface corresponding to a change in volume of the reservoir; and determining a characteristic of the reservoir from the surface displacements.
    • 基于地球表面位移观测的油藏特征。 表征储层的一种方法包括以下步骤:检测储层对刺激的响应,所述刺激导致储层中的压力变化; 以及从所述刺激的响应确定所述储层的特性。 响应可以是随时间周期性地变化的压力变化或地球表面的一组位移。 在另一示例中,一种方法包括以下步骤:检测对应于储层中的压力变化的地球表面的一组位移; 以及从表面位移确定储层的特征。 在又一示例中,一种方法包括以下步骤:检测对应于储层体积变化的地球表面的一组位移; 以及从表面位移确定储层的特征。
    • 9. 发明申请
    • Neural-Network Based Surrogate Model Construction Methods and Applications Thereof
    • 基于神经网络的代理模型构建方法及应用
    • US20080228680A1
    • 2008-09-18
    • US12048045
    • 2008-03-13
    • Dingding ChenAllan ZhongSyed HamidStanley Stephenson
    • Dingding ChenAllan ZhongSyed HamidStanley Stephenson
    • G06F15/18
    • G06N3/0454B33Y80/00
    • Various neural-network based surrogate model construction methods are disclosed herein, along with various applications of such models. Designed for use when only a sparse amount of data is available (a “sparse data condition”), some embodiments of the disclosed systems and methods: create a pool of neural networks trained on a first portion of a sparse data set; generate for each of various multi-objective functions a set of neural network ensembles that minimize the multi-objective function; select a local ensemble from each set of ensembles based on data not included in said first portion of said sparse data set; and combine a subset of the local ensembles to form a global ensemble. This approach enables usage of larger candidate pools, multi-stage validation, and a comprehensive performance measure that provides more robust predictions in the voids of parameter space.
    • 本文公开了各种基于神经网络的替代模型构建方法,以及这些模型的各种应用。 设计为仅在少量数据可用时使用(“稀疏数据条件”),所公开的系统和方法的一些实施例:创建在稀疏数据集的第一部分上训练的神经网络池; 为各种多目标函数中的每一个生成一组最小化多目标函数的神经网络集合; 基于不包括在所述稀疏数据集的所述第一部分中的数据,从每组集合中选择本地集合; 并组合一个本地组合的子集以形成全局集合。 这种方法使得可以使用更大的候选池,多级验证以及综合性能测量,从而在参数空间的空白中提供更强大的预测。
    • 10. 发明授权
    • Systems and methods employing cooperative optimization-based dimensionality reduction
    • 采用基于协同优化的维数降低的系统和方法
    • US09514388B2
    • 2016-12-06
    • US12190418
    • 2008-08-12
    • Dingding ChenSyed HamidMichael C. Dix
    • Dingding ChenSyed HamidMichael C. Dix
    • G06K9/62G06N3/08
    • E21B47/12E21B49/08E21B2049/085G06K9/6229G06K9/6248G06N3/08G06N3/086
    • Dimensionality reduction systems and methods facilitate visualization, understanding, and interpretation of high-dimensionality data sets, so long as the essential information of the data set is preserved during the dimensionality reduction process. In some of the disclosed embodiments, dimensionality reduction is accomplished using clustering, evolutionary computation of low-dimensionality coordinates for cluster kernels, particle swarm optimization of kernel positions, and training of neural networks based on the kernel mapping. The fitness function chosen for the evolutionary computation and particle swarm optimization is designed to preserve kernel distances and any other information deemed useful to the current application of the disclosed techniques, such as linear correlation with a variable that is to be predicted from future measurements. Various error measures are suitable and can be used.
    • 只要在维度降低过程中保留数据集的基本信息,尺寸减小系统和方法便于高维数据集的可视化,理解和解释。 在一些所公开的实施例中,使用聚类,集群内核的低维度坐标的进化计算,核心位置的粒子群优化以及基于内核映射的神经网络的训练来实现维数降低。 为进化计算和粒子群优化选择的适应度函数被设计为保留核心距离以及被认为对所公开技术的当前应用有用的任何其它信息,例如与将来的测量将要预测的变量的线性相关。 各种错误措施是合适的,可以使用。