会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Method for making solar cell having crystalline silicon P-N homojunction and amorphous silicon heterojunctions for surface passivation
    • 制造具有晶体硅P-N同态结构的太阳能电池和用于表面钝化的非晶硅异质结的方法
    • US08076175B2
    • 2011-12-13
    • US12036829
    • 2008-02-25
    • Daniel L. MeierAjeet Rohatgi
    • Daniel L. MeierAjeet Rohatgi
    • H01L21/20
    • H01L31/0745H01L31/068H01L31/0747H01L31/078H01L31/202Y02E10/547Y02P70/521
    • A thin silicon solar cell is described. Specifically, the solar cell may be fabricated from a crystalline silicon wafer having a thickness of approximately 50 micrometers to 500 micrometers. The solar cell comprises a first region having a p-n homojunction, a second region that creates heterojunction surface passivation, and a third region that creates heterojunction surface passivation. Amorphous silicon layers are deposited on both sides of the silicon wafer at temperatures below approximately 400 degrees Celsius to reduce the loss of passivation properties of the amorphous silicon. A final layer of transparent conductive oxide is formed on both sides at approximately 165 degrees Celsius. Metal contacts are applied to the transparent conductive oxide. The low temperatures and very thin material layers used to fabricate the outer layers of used to fabricate the outer layers of the solar cell protect the thin wafer from excessive stress that may lead to deforming the wafer.
    • 描述了薄硅太阳能电池。 具体地,太阳能电池可以由厚度约为50微米至500微米的晶体硅晶片制成。 太阳能电池包括具有p-n同质结的第一区域,产生异质结表面钝化的第二区域和产生异质结表面钝化的第三区域。 非晶硅层在低于约400摄氏度的温度下沉积在硅晶片的两侧,以减少非晶硅的钝化性能的损失。 在大约165摄氏度的两侧形成最终的透明导电氧化物层。 将金属触点施加到透明导电氧化物上。 用于制造用于制造太阳能电池的外层的外层的低温和非常薄的材料层保护薄晶片免受可能导致晶片变形的过大应力。
    • 3. 发明申请
    • METHOD FOR MAKING SOLAR CELL HAVING CRYSTALLINE SILICON P-N HOMOJUNCTION AND AMORPHOUS SILICON HETEROJUNCTIONS FOR SURFACE PASSIVATION
    • 用于制造具有结晶硅P-N HOMOJUNCTION的太阳能电池和用于表面钝化的非晶硅异质子的方法
    • US20090215218A1
    • 2009-08-27
    • US12036829
    • 2008-02-25
    • Daniel L. MeierAjeet Rohatgi
    • Daniel L. MeierAjeet Rohatgi
    • H01L21/00
    • H01L31/0745H01L31/068H01L31/0747H01L31/078H01L31/202Y02E10/547Y02P70/521
    • A thin silicon solar cell is described. Specifically, the solar cell may be fabricated from a crystalline silicon wafer having a thickness of approximately 50 micrometers to 500 micrometers. The solar cell comprises a first region having a p-n homojunction, a second region that creates heterojunction surface passivation, and a third region that creates heterojunction surface passivation. Amorphous silicon layers are deposited on both sides of the silicon wafer at temperatures below approximately 400 degrees Celsius to reduce the loss of passivation properties of the amorphous silicon. A final layer of transparent conductive oxide is formed on both sides at approximately 165 degrees Celsius. Metal contacts are applied to the transparent conductive oxide. The low temperatures and very thin material layers used to fabricate the outer layers of used to fabricate the outer layers of the solar cell protect the thin wafer from excessive stress that may lead to deforming the wafer.
    • 描述了薄硅太阳能电池。 具体地,太阳能电池可以由厚度约为50微米至500微米的晶体硅晶片制成。 太阳能电池包括具有p-n同质结的第一区域,产生异质结表面钝化的第二区域和产生异质结表面钝化的第三区域。 非晶硅层在低于约400摄氏度的温度下沉积在硅晶片的两侧,以减少非晶硅的钝化性能的损失。 在大约165摄氏度的两侧形成最终的透明导电氧化物层。 将金属触点施加到透明导电氧化物上。 用于制造用于制造太阳能电池的外层的外层的低温和非常薄的材料层保护薄晶片免受可能导致晶片变形的过大应力。
    • 7. 发明授权
    • Methods for passivating silicon devices at low temperature to achieve
low interface state density and low recombination velocity while
preserving carrier lifetime
    • 在低温下钝化硅器件以实现低界面态密度和低复合速度同时保持载流子寿命的方法
    • US5462898A
    • 1995-10-31
    • US249121
    • 1994-05-25
    • Zhizhang ChenAjeet Rohatgi
    • Zhizhang ChenAjeet Rohatgi
    • H01L21/3105H01L21/316H01L23/31H01L21/02
    • H01L21/02164H01L21/02211H01L21/02274H01L21/02307H01L21/02337H01L21/02345H01L21/02362H01L21/3105H01L21/31612H01L23/3171H01L2924/0002H01L2924/13091H01L2924/19041Y10S438/958
    • A new process has been developed to achieve a very low SiO.sub.x /Si interface state density D.sub.it, low recombination velocity S ( 5 ms) for oxides deposited on silicon substrates at low temperature. The technique involves direct plasma-enhanced chemical vapor deposition (PECVD), with appropriate growth conditions, followed by a photo-assisted rapid thermal annealing (RTA) process. Approximately 500-A-thick SiO.sub.x layers are deposited on Si by PECVD at 250.degree. C. with 0.02 W/cm.sup.-2 rf power, then covered with SiN or an evaporated thin aluminum layer, and subjected to a photo-assisted anneal in forming gas ambient at 350.degree. C., resulting in an interface state density D.sub.it in the range of about 1-4.times.10.sup.10 cm.sup.-2 eV.sup.-1, which sets a record for the lowest interface state density D.sub.it for PECVD oxides fabricated to date. Detailed analysis shows that the PECVD deposition conditions, photo-assisted anneal, forming gas ambient, and the presence of an aluminum layer on top of the oxides during the anneal, all contributed to this low value of interface state density D.sub.it. Detailed metal-oxide semiconductor analysis and model calculations show that such a low recombination velocity S is the result of moderately high positive oxide charge (5.times.10.sup.11 -1.times.10.sup.12 cm.sup.-2) and relatively low midgap interface state density (1.times.10.sup.10 -4.times.10.sup.10 cm.sup.-2 eV.sup.-1). Photo-assisted anneal was found to be superior to furnace annealing, and a forming gas ambient was better than a nitrogen ambient for achieving a very low surface recombination velocity S.
    • 已经开发了一种新的工艺,以实现低沉积在硅衬底上的氧化物的低SiO x / Si界面态密度Dit,低复合速度S(<2cm / s)和高有效载流子寿命Teff(> 5ms) 温度。 该技术涉及直接等离子体增强化学气相沉积(PECVD),具有合适的生长条件,随后进行光辅助快速热退火(RTA)工艺。 通过PECVD在250℃下以0.02W / cm 2的功率将约500-A厚的SiO x层沉积在Si上,然后用SiN或蒸发的薄铝层覆盖,并在成型中进行光辅助退火 气体环境在350℃,导致约1-4x10 10 cm -2 eV-1范围内的界面态密度Dit,这为迄今为止制造的PECVD氧化物的最低界面态密度Dit设置了记录。 详细分析表明,在退火过程中,PECVD沉积条件,光辅助退火,形成气体环境以及氧化物顶部铝层的存在都导致了界面态密度Dit的这个低值。 详细的金属氧化物半导体分析和模型计算表明,这种低复合速度S是中等高的正电荷电荷(5×10 11 -1×10 12 cm -2)和相对较低的中间隙界面态密度(1×10-4-4×10cm-2eV-1 )。 发现光辅助退火优于炉退火,并且形成气体环境优于氮环境以实现非常低的表面复合速度S.