会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Reducing agent regeneration system
    • 还原剂再生系统
    • US5304297A
    • 1994-04-19
    • US23653
    • 1993-02-26
    • D. Morgan TenchDennis P. AndersonLeslie F. Warren, Jr.
    • D. Morgan TenchDennis P. AndersonLeslie F. Warren, Jr.
    • C25C3/24B23K1/20B23K35/38C23C18/16C23G1/36C25C1/00C25C1/14C25C3/36C25D21/18C25D5/02C25D17/00
    • B23K1/206B23K35/38C23C18/1617C23G1/36C25D21/18B23K2201/42
    • A system is provided for regenerating reducing agents used in ancillary chemical or electrochemical processes such as restoring solderability of electronic components. The system includes a cathode, an anode, and an electrolyte system that is separated by a semipermeable ionic barrier into a catholyte and an anolyte. The catholyte includes the reduced member of a redox couple, which can be regenerated electrochemically. The redox couple of the electrolyte system is charged like a battery and discharged during the ancillary process. Regeneration of the reduced member of the redox couple is accomplished at the cathode. The cathode comprises an electrode having a high hydrogen overvoltage so that sufficiently negative potentials can be attained while minimizing hydrogen evolution. Chemical balance is maintained by the semipermeable ionic barrier, which permits proton migration from the anolyte to the catholyte but acts as a barrier against diffusion and migration of cations from the catholyte to the anolyte. Ideally, the anodic reaction is breakdown of water to form oxygen, which is vented, and protons that migrate across the ionic barrier to the catholyte replacing protons consumed in the ancillary process. The overall reaction in a system for restoring solderability of electronic components is reduction of metallic oxide to metal and release of oxygen, with no net chemical change in the composition of the regeneration system.
    • 提供了用于再生用于辅助化学或电化学过程中的还原剂的系统,例如恢复电子部件的可焊性。 该系统包括阴极,阳极和电解质系统,其由半透性离子屏障分离成阴极电解液和阳极电解液。 阴极电解质包括氧化还原对的还原成员,其可以电化学地再生。 电解液系统的氧化还原电极像电池一样充电并在辅助过程中放电。 在阴极处实现氧化还原对的还原成员的再生。 阴极包括具有高氢过电压的电极,使得可以在使氢析出最小化的同时实现足够的负电位。 化学平衡通过半透性离子屏障保持,这允许质子从阳极电解液迁移到阴极电解液,但是作为阻止阳离子从阴极电解液到阳极电解液的扩散和迁移的屏障。 理想地,阳极反应是水的分解以形成被排出的氧,以及迁移穿过离子屏障到阴极电解液的质子代替在辅助过程中消耗的质子。 用于恢复电子部件的可焊性的系统中的总体反应是将金属氧化物还原为金属和释放氧,而在再生系统的组成中没有净化学变化。
    • 3. 发明授权
    • Reversible electrochemical mirror (REM) with improved electrolytic
solution
    • 具有改进电解液的可逆电化学镜(REM)
    • US6111685A
    • 2000-08-29
    • US356730
    • 1999-07-19
    • D. Morgan TenchLeslie F. Warren, Jr.Michael A. Cunningham
    • D. Morgan TenchLeslie F. Warren, Jr.Michael A. Cunningham
    • G02B5/08G02F1/15G02F1/155G02F1/153
    • G02F1/1506G02F1/155
    • A reversible electrochemical mirror (REM) includes a first electrode and a second electrode, one of which is substantially transparent to at least a portion of the spectrum of electromagnetic radiation. An electrolytic solution, disposed between the first and second electrodes, contains ions of a metal which can electrodeposit on the electrodes. The electrolytic solution also contains halide and/or pseudohalide anions having a total molar concentration ratio of at least 6:1 compared to that of the electrodepositable metal. A negative electrical potential applied to the first electrode causes deposited metal to be dissolved from the second electrode into the electrolytic solution and to be electrodeposited from the solution onto the first electrode to form a mirror deposit, thereby affecting the reflectivity of the REM device for electromagnetic radiation. A positive electrical potential applied to the first electrode causes deposited metal to be dissolved from the first electrode into the solution and electrodeposited from the solution onto the second electrode, thereby decreasing the reflectivity of the REM mirror. It is usually necessary to apply a surface modification layer to the first electrode to ensure uniform nucleation so that a mirror electrodeposit having high reflectivity is obtained. The high molar concentration ratio of halide and/or pseudohalide anions to electrodepositable metal ions in the electrolyte provides the inherent electrolyte stability, high deposit quality, good deposit erasure and long cycle life needed for practical applications.
    • 可逆电化学反射镜(REM)包括第一电极和第二电极,其中之一对于电磁辐射谱的至少一部分基本上是透明的。 设置在第一和第二电极之间的电解液含有能够电沉积在电极上的金属离子。 电解液还含有与可电沉积金属相比总摩尔浓度比至少为6:1的卤化物和/或拟卤化物阴离子。 施加到第一电极的负电位使沉积的金属从第二电极溶解到电解液中,并从溶液中电沉积到第一电极上以形成镜沉积物,从而影响REM装置的电磁反射率 辐射。 施加到第一电极的正电位使沉积的金属从第一电极溶解到溶液中并从溶液中电沉积到第二电极上,从而降低REM反射镜的反射率。 通常需要对第一电极施加表面改性层以确保均匀的成核,从而获得具有高反射率的镜电沉积。 卤化物和/或拟卤化物阴离子与电解金属离子在电解质中的高摩尔浓度比提供固有的电解质稳定性,高沉积质量,良好的沉积物擦除和实际应用所需的长循环寿命。
    • 4. 发明授权
    • Photoelectrochemical fabrication of electronic circuits
    • 电子电路的光电化学制造
    • US5595637A
    • 1997-01-21
    • US559952
    • 1995-11-17
    • D. Morgan TenchLeslie F. Warren, Jr.Young J. Chung
    • D. Morgan TenchLeslie F. Warren, Jr.Young J. Chung
    • H05K3/18C25D5/02C25D7/12H05K3/20C25D5/00B05D5/12
    • C25D7/123C25D5/024C25D7/0635H05K3/205
    • A photoelectrochemical method and apparatus are disclosed for fabricating electronic circuits. An electroplating solution is applied to the surface of a reverse biased p-type semiconductor material, such as NiO. The solution-covered NiO surface is illuminated with a light beam directed by computer aided design data to photoelectrochemically deposit a seed layer of metal in an electronic circuit pattern. The seed layer may be thickened by further deposition in a plating bath to form metallic circuit traces on the NiO. If desired, the metallic circuitry may be transferred from the NiO to an alternate substrate having a low dielectric constant. The porosity of the NiO surface can be adjusted to optimize the metallic circuit adhesion for image retention or ease of transfer. The metallic traces may also be treated to reduce adhesion of subsequently deposited metal that can be transferred readily. If sufficient residual metal remains on the NiO surface after circuit transfer, the trace can be rethickened to transfer multiple circuits of the same pattern without reimaging. An old metallic image can be electro-dissolved by changing the bias of the NiO with respect to the plating bath, thereby erasing the old image so that a new circuit pattern can be formed by photoelectrochemical deposition. The process can be performed on a rotating cylinder so that electronic circuits can be produced in a continuous process of photoelectrochemical deposition, seed metal thickening, adhesion reduction, circuit transfer, and image erasure that provides advantages in cost, circuit resolution, and environmental protection.
    • 公开了用于制造电子电路的光电化学方法和装置。 将电镀溶液施加到反向偏压p型半导体材料(例如NiO)的表面上。 溶液覆盖的NiO表面用计算机辅助设计数据指示的光束照射,以电子电化学方式沉积电子电路图案中的金属种子层。 种子层可以通过在镀浴中进一步沉积而增厚,以在NiO上形成金属电路迹线。 如果需要,金属电路可以从NiO转移到具有低介电常数的替代衬底。 可以调节NiO表面的孔隙率,以优化金属电路粘附,以保持图像或易于传输。 也可以处理金属痕迹以减少可以容易地转移的随后沉积的金属的粘附。 如果在电路传输后,NiO表面上剩余的残余金属残留,则可以重新设计迹线以传输相同图案的多个电路,而无需重新成像。 通过改变NiO相对于镀浴的偏压,可以使旧的金属图像电解,从而擦除旧图像,从而可以通过光电化学沉积形成新的电路图案。 该方法可以在旋转圆柱体上进行,使得可以在光电化学沉积,种子金属增厚,附着力降低,电路转移和图像擦除的连续过程中制造电子电路,从而提供成本,电路分辨率和环境保护方面的优点。
    • 5. 发明授权
    • Reversible electrochemical mirror for modulation of reflected radiation
    • 用于调制反射辐射的可逆电化学镜
    • US6166847A
    • 2000-12-26
    • US333385
    • 1999-06-15
    • D. Morgan TenchLeslie F. Warren, Jr.Michael A. Cunningham
    • D. Morgan TenchLeslie F. Warren, Jr.Michael A. Cunningham
    • G02F1/15G02F1/153G02F1/155
    • G02F1/1506G02F1/155
    • An electrochemical mirror includes a transparent first electrode and a second electrode. An electrolytic solution, disposed between the first and second electrodes, contains ions of a metal which can electrodeposit on the electrodes. A negative electrical potential applied to the first electrode causes deposited metal to be dissolved from the second electrode into the electrolytic solution and to be electrodeposited from the solution onto the first electrode, thereby affecting the reflectivity of the mirror for electromagnetic radiation. A surface modification layer applied to the first electrode ensures that the electrodeposit is substantially uniform, resulting in a mirror layer which increases the reflectivity of the mirror. A positive electrical potential applied to the first electrode causes deposited metal to be dissolved from the first electrode and electrodeposited from the solution onto the second electrode, thereby decreasing the reflectivity of the mirror.
    • 电化学反应镜包括透明的第一电极和第二电极。 设置在第一和第二电极之间的电解液含有能够电沉积在电极上的金属离子。 施加到第一电极的负电位使得沉积的金属从第二电极溶解到电解液中并且从溶液中电沉积到第一电极上,从而影响用于电磁辐射的反射镜的反射率。 施加到第一电极的表面改性层确保电沉积物基本均匀,从而产生增加反射镜反射率的镜面层。 施加到第一电极的正电位使沉积的金属从第一电极溶解并从溶液中电沉积到第二电极上,从而降低反射镜的反射率。
    • 6. 发明授权
    • Electrodeposition cell with high light transmission
    • 具有高透光性的电沉积池
    • US5903382A
    • 1999-05-11
    • US994413
    • 1997-12-19
    • D. Morgan TenchLeslie F. Warren, Jr.
    • D. Morgan TenchLeslie F. Warren, Jr.
    • G02F1/15G02F1/155G02F1/153
    • G02F1/1506G02F1/155G02F2001/1555G02F2201/121
    • An electrochemical device includes a transparent first electrode and a second electrode distributed in localized areas. An electrolytic solution, disposed between and in electrical contact with the first and second electrodes, contains ions of a metal which can electrodeposit on the first and second electrodes. Atoms of this metal are deposited on the first or the second electrode. A negative electrical potential applied to the first electrode causes deposited metal to be dissolved from the second electrode into the electrolytic solution and to be electrodeposited from the solution onto the first electrode, thereby affecting the propagation of electromagnetic radiation through the device. Conversely, a positive electrical potential applied to the first electrode causes deposited metal to be dissolved from the first electrode and electrodeposited from the solution onto the second electrode, thereby increasing the transmissivity of the device.
    • 电化学装置包括分布在局部区域中的透明第一电极和第二电极。 设置在第一和第二电极之间并与之电接触的电解溶液包含能够电沉积在第一和第二电极上的金属离子。 该金属的原子沉积在第一或第二电极上。 施加到第一电极的负电位使得沉积的金属从第二电极溶解到电解液中并且从溶液中电沉积到第一电极上,从而影响电磁辐射通过该装置的传播。 相反,施加到第一电极的正电位使沉积的金属从第一电极溶解并从溶液中电沉积到第二电极上,从而增加了器件的透射率。
    • 7. 发明授权
    • Reversible electrodeposition device with ionic liquid electrolyte
    • 具有离子液体电解质的可逆电沉积装置
    • US06552843B1
    • 2003-04-22
    • US10066210
    • 2002-01-31
    • D. Morgan TenchLeslie F. Warren, Jr.
    • D. Morgan TenchLeslie F. Warren, Jr.
    • G02F100
    • G02F1/1506
    • The present invention is a reversible electrodeposition optical modulation device employing an ionic liquid electrolyte, which is comprised of a mixture of an ionic organic compound and the salt of an electrodepositable metal. The solventless ionic liquid can contain very high concentrations of electrodepositable metal ions and provides the high current carrying capability needed for fast device switching. Switching uniformity is also significantly improved since the electrolyte resistance is at least an order of magnitude higher than that of typical solvent-based electrolytes. Fast switching and good cycle life for high quality mirror electrodeposits in reversible electrochemical mirror (REM) devices was demonstrated. Best results were obtained for novel silver halide electrolytes employing pyrrolidinium and N-methylpyrrolidinium cations.
    • 本发明是一种使用离子液体电解质的可逆电沉积光调制装置,其由离子有机化合物和可电沉积金属的盐的混合物组成。 无溶剂离子液体可以含有非常高浓度的电沉积金属离子,并提供快速器件切换所需的高电流承载能力。 由于电解质电阻比典型的基于溶剂的电解质高至少一个数量级,开关均匀性也显着提高。 证明了可逆电化学镜(REM)器件中的高质量镜电沉积的快速切换和良好的循环寿命。 使用吡咯烷鎓和N-甲基吡咯烷鎓阳离子的新型卤化银电解质获得了最佳结果。
    • 8. 发明授权
    • Method of forming a metallic oxide coating with a desired
crystallographic orientation
    • 形成具有所需晶体取向的金属氧化物涂层的方法
    • US5711804A
    • 1998-01-27
    • US642381
    • 1996-05-03
    • D. Morgan TenchLeslie F. Warren, Jr.Young J. Chung
    • D. Morgan TenchLeslie F. Warren, Jr.Young J. Chung
    • C30B5/00C30B1/10
    • C30B5/00C30B29/16
    • Oxide coatings are formed with a desired crystallographic texture over a large surface area. A metallic substrate is electrodeposited or vacuum deposited with a preferred crystallographic orientation, and a sol-gel/thermal process is used to form a "pseudo-epitaxial" oxide coating having crystallites that are influenced by the crystallographic orientation of the substrate. In one embodiment, p-type nickel oxide coatings with desirable electronic properties are produced by sol-gel/thermal processing on nickel substrates electrodeposited from a sulfamate nickel bath at a relatively high current density and low temperature. The electrodeposited nickel substrate has a strong Ni{100} preferred orientation. Epitaxial effects during sol-gel/thermal formation of NiO on the electrodeposited substrate enhance the extent to which the NiO{100} and NiO{111} crystal facets are aligned parallel to the coating surface, and minimize the NiO{110} orientation. This texture modification significantly improves the photoresponse of the nickel oxide coating. The method is anticipated to be useful in other metal oxide/metal substrate systems for the production of catalysts, cathodes for lithium ion and nickel-cadmium batteries, photoelectrochemical printed circuits, high-temperature electronic devices, flat panel displays, photoelectrochemical solar cells, and sensors. An advantage of the invention is that electrodeposition, vacuum deposition, and sol-gel/thermal processes are suitable for coating large surface areas.
    • 氧化物涂层在大的表面积上形成所需的晶体学结构。 以优选的结晶方向电沉积或真空沉积金属基底,并且使用溶胶 - 凝胶/热过程形成具有受基底结晶取向影响的微晶的“假外延”氧化物涂层。 在一个实施方案中,具有所需电子性能的p型氧化镍涂层通过溶胶 - 凝胶/热处理在以相当高的电流密度和低温度从氨基磺酸镍浴电沉积的镍基底上制备。 电沉积的镍基底具有很强的Ni {100}优选取向。 NiO在电沉积衬底上的溶胶凝胶/热形成过程中的外延效应增强了NiO {100}和NiO {111}晶面平行于涂层表面取向的程度,并使NiO {110}取向最小化。 这种纹理修饰显着改善了氧化镍涂层的光响应。 预期该方法可用于生产催化剂,锂离子和镍镉电池的阴极,光电化学印刷电路,高温电子器件,平板显示器,光电化学太阳能电池的其它金属氧化物/金属基底系统 传感器。 本发明的优点是电沉积,真空沉积和溶胶 - 凝胶/热处理适用于涂覆大的表面积。
    • 9. 发明授权
    • Fast-switching reversible electrochemical mirror (REM)
    • 快速开关可逆电化学镜(REM)
    • US06400491B1
    • 2002-06-04
    • US09619127
    • 2000-07-18
    • D. Morgan TenchLeslie F. Warren, Jr.Petra V. Rowell
    • D. Morgan TenchLeslie F. Warren, Jr.Petra V. Rowell
    • G02F1153
    • G02F1/1506G02F1/155
    • A reversible electrochemical mirror (REM) includes a first electrode and a second electrode, one of which is substantially transparent to at least a portion of the spectrum of electromagnetic radiation. An essentially nonaqueous electrolytic solution, disposed between the first and second electrodes, contains ions of an electrodepositable metal having a molar concentration of more than 0.5 M. The electrolytic solution also contains halide and/or pseudohalide anions having a total molar concentration ratio of at least 2:1 relative to the concentration of the electrodepositable metal cations. A negative electrical potential applied to the first electrode causes deposited metal to be dissolved from the second electrode into the electrolytic solution and to be electrodeposited from the solution onto the first electrode to form a mirror deposit, thereby affecting the reflectivity of the REM device for electromagnetic radiation. A positive electrical potential applied to the first electrode causes deposited metal to be dissolved from the first electrode into the solution and electrodeposited from the solution onto the second electrode, thereby decreasing the reflectivity of the REM mirror. It is usually necessary to apply a surface modification layer to the first electrode to ensure uniform nucleation so that a mirror electrodeposit having high reflectivity is obtained. The high molar concentration of mirror metal cations attained in essentially nonaqueous solvents by use of at least a 2:1 molar ratio of halide and/or pseudohalide anions to electrodepositable metal ions in the electrolyte provides the fast switching speed, inherent electrolyte stability, high deposit quality, good deposit erasure and long cycle life needed for practical applications. Increases above this 2:1 molar ratio may be required to optimize the device performance.
    • 可逆电化学反射镜(REM)包括第一电极和第二电极,其中之一对于电磁辐射谱的至少一部分基本上是透明的。 设置在第一和第二电极之间的基本上非水电解液包含摩尔浓度大于0.5M的可电沉积金属的离子。电解溶液还含有至少具有总摩尔浓度比的卤化物和/或拟卤化物阴离子 相对于电沉积金属阳离子的浓度为2:1。 施加到第一电极的负电位使沉积的金属从第二电极溶解到电解液中,并从溶液中电沉积到第一电极上以形成镜沉积物,从而影响REM装置的电磁反射率 辐射。 施加到第一电极的正电位使沉积的金属从第一电极溶解到溶液中并从溶液中电沉积到第二电极上,从而降低REM反射镜的反射率。 通常需要对第一电极施加表面改性层以确保均匀的成核,从而获得具有高反射率的镜电沉积。 通过使用至少2:1摩尔比的卤化物和/或拟卤化物阴离子在电解质中可电沉积的金属离子,在基本上非水溶剂中获得的镜面金属阳离子的高摩尔浓度提供了快速的开关速度,固有的电解质稳定性,高沉积 质量好,良好的沉积物擦除和循环寿命长,适用于实际应用。 可能需要高于此2:1摩尔比才能优化器件性能。
    • 10. 发明授权
    • Diffusely-reflecting reversible electrochemical mirror
    • 漫反射可逆电化学镜
    • US06256135B1
    • 2001-07-03
    • US09410154
    • 1999-09-30
    • D. Morgan TenchLeslie F. Warren, Jr.Michael A. Cunningham
    • D. Morgan TenchLeslie F. Warren, Jr.Michael A. Cunningham
    • G02F1155
    • G02F1/1506G02F1/155G02F2001/133776G02F2203/02G02F2203/03
    • A reversible electrochemical mirror device includes a substantially transparent first electrode having a textured surface, and a second electrode which may be distributed in localized areas. An electrolytic solution, disposed between the first and second electrodes, contains ions of a metal which can electrodeposit on the electrodes. A negative electrical potential applied to the first electrode causes deposited metal to be dissolved from the second electrode into the electrolytic solution and to be electrodeposited from the solution onto the textured surface of the first electrode, thereby affecting the reflectivity of the device for electromagnetic radiation. Because of the textured surface, light striking the first electrode is diffusely reflected, making the device desirable for architectural and automotive glass applications. A surface modification layer applied to the first electrode ensures that the electrodeposit is substantially uniform. A positive electrical potential applied to the first electrode causes deposited metal to be dissolved from the first electrode and electrodeposited from the solution onto the second electrode, thereby decreasing the reflection of radiation by the device.
    • 可逆电化学镜装置包括具有纹理表面的基本透明的第一电极和可分布在局部区域中的第二电极。 设置在第一和第二电极之间的电解液含有能够电沉积在电极上的金属离子。 施加到第一电极的负电位使得沉积的金属从第二电极溶解到电解溶液中,并且从溶液中电沉积到第一电极的纹理表面上,从而影响用于电磁辐射的装置的反射率。 由于纹理表面,撞击第一电极的光漫反射,使得该装置对于建筑和汽车玻璃应用是理想的。 施加到第一电极的表面改性层确保电沉积物基本均匀。 施加到第一电极的正电位使沉积的金属从第一电极溶解并从溶液中电沉积到第二电极上,从而减少器件的辐射反射。