会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Method and structure for creating a self-aligned bicmos-compatible
bipolar transistor with a laterally graded emitter structure
    • 用于产生具有横向渐变发射极结构的自对准二元双极晶体管的方法和结构
    • US5444003A
    • 1995-08-22
    • US81761
    • 1993-06-23
    • Chung S. WangYing-Tsong LohHo-Yuan Yu
    • Chung S. WangYing-Tsong LohHo-Yuan Yu
    • H01L21/8249H01L27/06H01L21/265H01L21/70H01L27/00H01L21/255
    • H01L27/0623H01L21/8249
    • A bipolar transistor is fabricated in a CMOS-compatible process so as to be self-aligning, with resultant small geometry and improved high frequency performance, and to have improved hot carrier characteristics. The bipolar device has a laterally graded emitter structure that is fabricated in a "top-down" implant process. During fabrication sidewall spacers are formed overlying the peripheral region of the laterally graded emitter. These spacers protect the underlying region against counter-doping during a subsequent intrinsic base implant, and cause the emitter and base contacts to be self-aligning. Because bipolar dimensions are thus reduced, a very narrow base width is achieved, resulting in improved device cutoff frequency. Further, a narrower emitter-base contact separation is achieved, reducing junction area and attendant junction capacitance. A base link region is formed to further improve emitter-base breakdown voltage, and to reduce extrinsic base resistance. A BiCMOS integrated circuit may be fabricated with bipolar transistors of either polarity and with MOS transistors of either polarity. BiCMOS fabrication can occur wherein substantially the same process steps are employed, or wherein specific bipolar and MOS implant steps are decoupled to optimize laterally graded emitter dopant profiles, base-link resistance, and MOS off-state leakage currents.
    • 双极晶体管以CMOS兼容工艺制造,以便进行自对准,从而获得小的几何形状和改善的高频性能,并具有改进的热载流子特性。 双极器件具有横向渐变的发射极结构,其以“自顶向下”植入工艺制造。 在制造期间,侧壁间隔物形成在横向渐变发射体的周边区域上。 这些间隔件在随后的本征基极植入期间保护底层区域免受反掺杂,并且使发射极和基极触点自对准。 因为双极尺寸因此减小,所以实现非常窄的基极宽度,导致器件截止频率的提高。 此外,实现较窄的发射极 - 基极接触分离,减少结面积和伴随的结电容。 形成基极连接区域以进一步提高发射极 - 基极击穿电压,并减少外部基极电阻。 BiCMOS集成电路可以用任一极性的双极晶体管和任一极性的MOS晶体管制造。 可以发生BiCMOS制造,其中采用基本上相同的工艺步骤,或者其中特定的双极和MOS注入步骤被去耦以优化横向渐变的发射极掺杂物分布,基极连接电阻和MOS截止状态漏电流。
    • 2. 发明授权
    • BICMOS-compatible method for creating a bipolar transistor with
laterally graded emitter structure
    • BICMOS兼容方法,用于创建具有横向渐变发射极结构的双极晶体管
    • US5288652A
    • 1994-02-22
    • US993229
    • 1992-12-18
    • Chung S. WangYing-Tsong LohEdward D. Nowak
    • Chung S. WangYing-Tsong LohEdward D. Nowak
    • H01L21/8249H01L21/265H01L29/70
    • H01L21/8249Y10S438/944
    • A bipolar transistor is fabricated in a CMOS-compatible process with a laterally graded emitter structure that is fabricated in a "top-down" implant process. The laterally graded emitter decreases electric field intensities in the emitter-base junction under reverse bias, thus reducing hot carrier generation and improving emitter-base junction breakdown voltage. High current gain is further maintained by establishing sharply defined emitter-base junctions. During fabrication a blocking layer and overlying cap layer are formed in an inverted "T" shape over a desired emitter window region. Lateral projection of the cap ledges are used to define the laterally graded emitter width, while the distance separating the cap ledges defines the width of the central emitter region. The central emitter region is implanted and driven-in to a desired depth, after which the protective cap is removed. The entire emitter window region is then implanted with a like polarity dopant of lesser dosage, which dopant is then driven-in to form laterally graded emitter junctions of a desired depth. A BiCMOS integrated circuit may be fabricated with bipolar transistors of either polarity and with MOS transistors of either polarity, using substantially the same process steps. The resultant MOS devices have lightly doped drain regions to enhance MOS hot carrier performance.
    • 双极晶体管以CMOS兼容工艺制造,具有以“自顶向下”注入工艺制造的横向渐变发射极结构。 横向渐变发射极在反向偏压下降低发射极 - 基极结中的电场强度,从而减少热载流子的产生并改善发射极 - 基极结击穿电压。 通过建立清晰的发射极 - 基极结,进一步维持高电流增益。 在制造期间,在期望的发射器窗口区域上以倒置的“T”形状形成阻挡层和覆盖覆盖层。 盖凸缘的横向投影用于限定横向渐变发射器宽度,而分隔盖凸缘的距离限定了中心发射极区域的宽度。 将中心发射极区域植入并驱动到期望的深度,之后去除保护盖。 然后用较小剂量的类似极性掺杂剂注入整个发射极窗口区域,然后将该掺杂剂驱入以形成期望深度的横向渐变的发射极结。 可以使用基本上相同的工艺步骤,制造具有任一极性的双极晶体管和任一极性的MOS晶体管的BiCMOS集成电路。 所得的MOS器件具有轻掺杂漏极区以增强MOS热载体性能。
    • 3. 发明授权
    • Methods for fabricating anti-fuse structures
    • 制造抗熔丝结构的方法
    • US5793094A
    • 1998-08-11
    • US579780
    • 1995-12-28
    • Ivan SanchezYu-Pin HanYing-Tsong LohWalter D. Parmantie
    • Ivan SanchezYu-Pin HanYing-Tsong LohWalter D. Parmantie
    • H01L23/525H01L29/00
    • H01L23/5252H01L2924/0002
    • A method for substantially reducing variations in a programming voltage of an anti-fuse structure formed on an integrated circuit wafer. The anti-fuse structure has a metal-one layer, an anti-fuse layer disposed above the metal-one layer, a oxide layer disposed above the anti-fuse layer, and a via hole in the oxide layer through to the anti-fuse layer for receiving a deposition of a metal-two material. The method includes the step of rendering a selected anti-fuse area susceptible to fuse link formation by reducing a resistivity of the selected anti-fuse area to diffusion of atoms from one of the metal-one layer and the metal-two layer when a programming voltage is applied between the metal one layer and the metal two layer. The selected anti-fuse area is located in the anti-fuse layer and substantially adjacent to and outside of an anti-fuse area directly below the via hole. The method further includes the step of depositing the metal-two material into the via hole.
    • 一种用于基本上减少在集成电路晶片上形成的抗熔丝结构的编程电压的变化的方法。 反熔丝结构具有金属一层,设置在金属一层上方的抗熔丝层,设置在抗熔融层上方的氧化物层,以及氧化物层中的通孔到反熔丝 用于接收金属二材料的沉积的层。 该方法包括以下步骤:当编程时,通过降低所选择的反熔丝区域与金属层和金属二层中的一个的原子的扩散,使选择的抗熔丝区域易于熔融链接形成 在金属一层和金属两层之间施加电压。 所选择的反熔丝区域位于反熔丝层中,并且基本上邻近通孔正下方的反熔丝区域的外部。 该方法还包括将金属二材料沉积到通孔中的步骤。
    • 5. 发明授权
    • Methods and apparatus for fabricationg anti-fuse devices
    • 制造反熔丝器件的方法和装置
    • US5789795A
    • 1998-08-04
    • US579824
    • 1995-12-28
    • Ivan SanchezYu-Pin HanMiguel A. DelgadoYing-Tsong Loh
    • Ivan SanchezYu-Pin HanMiguel A. DelgadoYing-Tsong Loh
    • H01L23/525H01L29/00
    • H01L23/5252H01L2924/0002
    • An integrated circuit having a semiconductor substrate and an anti-fuse structure formed on the semiconductor substrate. The anti-fuse structure includes a metal-one layer and an anti-fuse layer disposed above the metal-one layer. The anti-fuse layer has a first resistance value when the anti-fuse structure is unprogrammed and a second resistance value lower than the first resistance value when the anti-fuse structure is programmed. There is further provided an etch stop layer disposed above the anti-fuse layer, and an inter-metal oxide layer disposed above the etch stop layer with the inter-metal oxide layer has a via formed therein. Additionally, there is further provided a metal-two layer disposed above the inter-metal oxide layer. In this structure, a portion of the metal-two layer is in electrical contact with the anti-fuse layer through the via in the inter-metal oxide layer.
    • 具有形成在半导体衬底上的半导体衬底和抗熔丝结构的集成电路。 反熔丝结构包括金属一层和设置在金属一层上方的抗熔丝层。 当抗熔丝结构未被编程时,抗熔丝层具有第一电阻值,并且当编程防熔丝结构时,抗熔丝层具有低于第一电阻值的第二电阻值。 还提供了设置在反熔丝层上方的蚀刻停止层,并且设置在蚀刻停止层上方的金属间氧化物层与金属间氧化物层在其中形成通孔。 此外,还提供了设置在金属间氧化物层上方的金属二层。 在该结构中,金属二层的一部分通过金属间氧化物层中的通孔与抗熔融层电接触。
    • 7. 发明授权
    • Method of making antifuse structures using implantation of both neutral
and dopant species
    • 使用中性和掺杂物种植物制造反熔丝结构的方法
    • US5783467A
    • 1998-07-21
    • US582844
    • 1995-12-29
    • Yu-Pin HanYing-Tsong LohIvan Sanchez
    • Yu-Pin HanYing-Tsong LohIvan Sanchez
    • H01L21/8246H01L27/112H01L21/82
    • H01L27/11206H01L27/112
    • An antifuse structure includes a first electrode, a layer of enhanced amorphous silicon over the first electrode, and a second electrode over the layer of enhanced amorphous silicon. The layer of enhanced amorphous silicon is formed by an ion-implantation of a neutral species and a dopant species into a deposited layer of amorphous silicon, such that the antifuse structure will have a stable conductive link in a programmed state and such that it will be less susceptible to off-state leakage in an unprogrammed state. A method for making an antifuse structure includes forming a lower electrode, depositing an amorphous silicon layer over the lower electrode, ion-implanting a neutral species and a dopant species into the amorphous silicon layer, and forming an upper electrode over the amorphous silicon layer.
    • 反熔丝结构包括第一电极,在第一电极上方的增强非晶硅层,以及增强非晶硅层上的第二电极。 通过将中性物质和掺杂剂物质的离子注入到非晶硅的沉积层中形成增强非晶硅层,使得反熔丝结构将在编程状态下具有稳定的导电链路,并且使得其将被 在非编程状态下较不易于断态泄漏。 制造反熔丝结构的方法包括形成下电极,在下电极上沉积非晶硅层,将中性物质和掺杂剂物质离子注入到非晶硅层中,以及在非晶硅层上形成上电极。
    • 8. 发明授权
    • Fabrication method for sub-half micron CMOS transistor
    • 半微米CMOS晶体管的制造方法
    • US5759901A
    • 1998-06-02
    • US905234
    • 1997-08-01
    • Ying-Tsong LohLily Ding
    • Ying-Tsong LohLily Ding
    • H01L21/336
    • H01L21/26586H01L29/0847H01L29/1083H01L29/66537H01L29/6656H01L29/6659H01L29/7833H01L21/28061
    • A technique for forming a high-performance sub-half micron MOS transistor is disclosed which has improved short channel characteristics without degradation of device performance. The transistor comprises a semiconductor substrate, a gate electrode, graded source and drain impurity regions, a first set of gate sidewall spacers, and a second set of gate sidewall spacers. The graded source and drain impurity regions comprise a relatively linear continuum of doped regions, ranging from lightly doped (LDD) regions, to moderately doped (MDD) regions, to heavily doped regions. Additionally, the transistor may include a punch through barrier region located within the substrate under the gate electrode. With these features, the transistor of the present invention allows for more precise control of conduction channel length without degradation of either (1) body factor and current drive, and/or (2) junction leakage, and without compromising hot carrier immunity.
    • 公开了一种用于形成高性能半微米MOS晶体管的技术,其具有改善的短沟道特性,而不会降低器件性能。 晶体管包括半导体衬底,栅电极,渐变源极和漏极杂质区域,第一组栅极侧壁间隔物和第二组栅极侧壁间隔物。 分级的源极和漏极杂质区域包括从轻掺杂(LDD)区域到中等掺杂(MDD)区域到掺杂区域的相对线性连续的掺杂区域。 另外,晶体管可以包括位于栅电极下方的衬底内的穿通阻挡区域。 利用这些特征,本发明的晶体管允许对传导通道长度进行更精确的控制,而不会降低(1)体因子和电流驱动,和/或(2)结漏电,并且不影响热载体的抗扰性。
    • 10. 发明授权
    • Antifuse structures
    • 防腐结构
    • US5821558A
    • 1998-10-13
    • US792791
    • 1997-02-03
    • Yu-Pin HanYing-Tsong LohIvan Sanchez
    • Yu-Pin HanYing-Tsong LohIvan Sanchez
    • H01L21/8246H01L27/112H01L29/04H01L27/02
    • H01L27/11206H01L27/112
    • An antifuse structure includes a first electrode, a layer of enhanced amorphous silicon over the first electrode, and a second electrode over the layer of enhanced amorphous silicon. The layer of enhanced amorphous silicon is formed by an ion-implantation of a neutral species and a dopant species into a deposited layer of amorphous silicon, such that the antifuse structure will have a stable conductive link in a programmed state and such that it will be less susceptible to off-state leakage in an unprogrammed state. A method for making an antifuse structure includes forming a lower electrode, depositing an amorphous silicon layer over the lower electrode, ion-implanting a neutral species and a dopant species into the amorphous silicon layer, and forming an upper electrode over the amorphous silicon layer.
    • 反熔丝结构包括第一电极,在第一电极上方的增强非晶硅层,以及增强非晶硅层上的第二电极。 通过将中性物质和掺杂剂物质的离子注入到非晶硅的沉积层中形成增强非晶硅层,使得反熔丝结构将在编程状态下具有稳定的导电链路,并且使得其将被 在非编程状态下较不易于断态泄漏。 制造反熔丝结构的方法包括形成下电极,在下电极上沉积非晶硅层,将中性物质和掺杂剂物质离子注入到非晶硅层中,以及在非晶硅层上形成上电极。