会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明授权
    • Method of making extended polysilicon self-aligned gate overlapped
lightly doped drain structure for submicron transistor
    • 制造扩展多晶硅自对准栅极重叠轻微掺杂漏极结构的方法,用于亚微米晶体管
    • US5196357A
    • 1993-03-23
    • US793916
    • 1991-11-18
    • William J. BoardmanYing T. LohEdward D. NowakChung S. Wang
    • William J. BoardmanYing T. LohEdward D. NowakChung S. Wang
    • H01L21/336
    • H01L29/66606
    • For a structure with an overlapping gate region, a first insulator layer is placed on a substrate. A source/drain polysilicon layer is placed on the insulator layer. The source/drain polysilicon layer is doped with atoms of a first conductivity type. A second insulator layer is placed on the source/drain polysilicon layer. A gap is etched in the second insulator layer and the source/drain polysilicon layer to expose a portion of the first insulator layer. The exposed portion of the first insulator layer and an additional amount of the first insulator layer under the second insulator is etched so as to enlarge the gap and to undercut a portion of the source/drain polysilicon layer. Two polysilicon filler regions are formed which fill a portion of the gap including the undercut area under the source/drain polysilicon layer. A gate polysilicon region is formed in the gap and extends over the source/drain polysilicon layer. The gate polysilicon region is separated from the source/drain polysilicon layer and the polysilicon filler regions by a dielectric region. Source/drain regions are formed by atoms in the source/drain polysilicon layer diffusing through the polysilicon filler regions into the substrate.
    • 对于具有重叠栅极区域的结构,将第一绝缘体层放置在基板上。 源极/漏极多晶硅层放置在绝缘体层上。 源极/漏极多晶硅层掺杂有第一导电类型的原子。 在源极/漏极多晶硅层上放置第二绝缘体层。 在第二绝缘体层和源极/漏极多晶硅层中蚀刻间隙以暴露第一绝缘体层的一部分。 蚀刻第一绝缘体层的暴露部分和附加量的第二绝缘体下面的第一绝缘体层,以便扩大间隙并切割源/漏多晶硅层的一部分。 形成两个多晶硅填料区,其填充包括源/漏多晶硅层下面的底切区的间隙的一部分。 栅极多晶硅区域形成在间隙中并在源极/漏极多晶硅层上延伸。 栅极多晶硅区域通过电介质区域与源极/漏极多晶硅层和多晶硅填充区域分离。 源/漏区由源极/漏极多晶硅层中的原子形成,通过多晶硅填料区扩散到衬底中。
    • 6. 发明授权
    • Method of forming an ESD and hot carrier resistant integrated circuit
structure
    • 形成ESD和耐热承载集成电路结构的方法
    • US5496751A
    • 1996-03-05
    • US394064
    • 1995-02-24
    • Yi-Hen WeiYing T. LohChung S. WangChenming Hu
    • Yi-Hen WeiYing T. LohChung S. WangChenming Hu
    • H01L21/265H01L21/336H01L29/78
    • H01L29/6659H01L21/26586H01L29/7836
    • An integrated circuit device including a substrate, a gate structure formed over the substrate, a channel formed in the substrate under the gate, a lightly-doped drain-side LDD region formed in the substrate adjacent to a drain-side of the channel (preferably by a LATID process), a drain region formed in the substrate near to the drain-side LDD region, and a drain-side DDD region substantially separating the drain-side LDD region from the drain region. Preferably, the integrated circuit device is symmetrically formed such that a lightly-doped source-side LDD region is formed in the substrate adjacent to a source-side of the channel (again preferably by a LATID process), a source region is formed in the substrate near to the source-side LDD region, and a source-side DDD region is formed in the substrate to substantially separate the source-side LDD region from the source region. Further preferably, the DDD regions substantially isolate the source and drain from a bulk portion of the substrate. A method of the present invention includes the steps of providing a semiconductor substrate, forming a gate over the substrate to define a channel, doping the substrate to form a pair of LDD regions in the substrate, doping the region to form a drain region and a source region, and doping the substrate to form a drain-side DDD region in the substrate which substantially separates the drain region from a drain-side LDD region and which substantially isolates the drain region from a bulk portion of the substrate, and to form a source-side DDD region in the substrate which substantially separates the source region from a source-side LDD region and substantially isolates the source region from a bulk portion of the substrate.
    • 一种集成电路器件,包括衬底,形成在衬底上的栅极结构,形成在栅极下方的衬底中的沟道,在衬底中与漏极侧相邻形成的轻掺杂漏极侧LDD区(优选地, 通过LATID工艺),形成在衬底附近的漏极侧LDD区域的漏极区域和将漏极侧LDD区域与漏极区域基本上分离的漏极侧DDD区域。 优选地,集成电路器件被对称地形成为使得在与衬底的源极侧相邻的衬底(再次优选地通过LATID工艺)中形成轻掺杂的源极侧LDD区,源极区形成在 在源极侧LDD区域附近形成基板,在基板上形成源极侧DDD区域,以使源极侧LDD区域与源极区域大致分离。 更优选地,DDD区域基本上将源极和漏极与基板的主体部分隔离。 本发明的方法包括以下步骤:提供半导体衬底,在衬底上形成栅极以限定通道,掺杂衬底以在衬底中形成一对LDD区域,掺杂该区域以形成漏区和 源极区域,并且掺杂衬底以在衬底中形成漏极侧DDD区域,其基本上将漏极区域与漏极侧LDD区域分离,并且基本上将漏极区域与衬底的本体部分隔离,并形成 源极侧DDD区域,其基本上将源极区域与源极侧LDD区域分离开来并且基本上将源极区域与衬底的主体部分隔离。
    • 7. 发明授权
    • Self-aligned contacts with gate overlapped lightly doped drain (goldd)
structure
    • 自对准触点与栅极重叠轻掺杂漏极(goldd)结构
    • US5340761A
    • 1994-08-23
    • US786321
    • 1991-10-31
    • Ying T. LohChung S. Wang
    • Ying T. LohChung S. Wang
    • H01L21/285H01L21/336H01L21/28
    • H01L29/6659H01L21/28518H01L29/6656
    • In a method for producing a transistor with an overlapping gate region, a gate region is placed on a substrate between two source/drain regions. Spacers are placed around the gate region. The spacers are formed of dielectric material. A thin layer of polysilicon is deposited over the two source/drain regions and over electrically insulating regions adjacent to the two source/drain regions. Portions of the thin layer of polysilicon are oxidized to electrically isolate the two source/drain regions. A metal-silicide layer is formed on the portions of the thin layer of polysilicon which are not oxidized. The metal-silicide layer is connected to a metal layer. The electrical contact of the metal-silicide layer and the metal layer is over an electrically insulating layer.
    • 在用于制造具有重叠栅极区域的晶体管的方法中,栅极区域被放置在两个源极/漏极区域之间的衬底上。 隔板放置在门区周围。 间隔物由电介质材料形成。 在两个源极/漏极区域和与两个源极/漏极区域相邻的电绝缘区域上沉积薄层多晶硅。 多晶硅薄层的一部分被氧化以电隔离两个源极/漏极区域。 在未被氧化的多晶硅薄层的部分上形成金属硅化物层。 金属硅化物层连接到金属层。 金属硅化物层和金属层的电接触在电绝缘层之上。
    • 8. 发明授权
    • BICMOS-compatible method for creating a bipolar transistor with
laterally graded emitter structure
    • BICMOS兼容方法,用于创建具有横向渐变发射极结构的双极晶体管
    • US5288652A
    • 1994-02-22
    • US993229
    • 1992-12-18
    • Chung S. WangYing-Tsong LohEdward D. Nowak
    • Chung S. WangYing-Tsong LohEdward D. Nowak
    • H01L21/8249H01L21/265H01L29/70
    • H01L21/8249Y10S438/944
    • A bipolar transistor is fabricated in a CMOS-compatible process with a laterally graded emitter structure that is fabricated in a "top-down" implant process. The laterally graded emitter decreases electric field intensities in the emitter-base junction under reverse bias, thus reducing hot carrier generation and improving emitter-base junction breakdown voltage. High current gain is further maintained by establishing sharply defined emitter-base junctions. During fabrication a blocking layer and overlying cap layer are formed in an inverted "T" shape over a desired emitter window region. Lateral projection of the cap ledges are used to define the laterally graded emitter width, while the distance separating the cap ledges defines the width of the central emitter region. The central emitter region is implanted and driven-in to a desired depth, after which the protective cap is removed. The entire emitter window region is then implanted with a like polarity dopant of lesser dosage, which dopant is then driven-in to form laterally graded emitter junctions of a desired depth. A BiCMOS integrated circuit may be fabricated with bipolar transistors of either polarity and with MOS transistors of either polarity, using substantially the same process steps. The resultant MOS devices have lightly doped drain regions to enhance MOS hot carrier performance.
    • 双极晶体管以CMOS兼容工艺制造,具有以“自顶向下”注入工艺制造的横向渐变发射极结构。 横向渐变发射极在反向偏压下降低发射极 - 基极结中的电场强度,从而减少热载流子的产生并改善发射极 - 基极结击穿电压。 通过建立清晰的发射极 - 基极结,进一步维持高电流增益。 在制造期间,在期望的发射器窗口区域上以倒置的“T”形状形成阻挡层和覆盖覆盖层。 盖凸缘的横向投影用于限定横向渐变发射器宽度,而分隔盖凸缘的距离限定了中心发射极区域的宽度。 将中心发射极区域植入并驱动到期望的深度,之后去除保护盖。 然后用较小剂量的类似极性掺杂剂注入整个发射极窗口区域,然后将该掺杂剂驱入以形成期望深度的横向渐变的发射极结。 可以使用基本上相同的工艺步骤,制造具有任一极性的双极晶体管和任一极性的MOS晶体管的BiCMOS集成电路。 所得的MOS器件具有轻掺杂漏极区以增强MOS热载体性能。
    • 10. 发明授权
    • Method and structure for creating a self-aligned bicmos-compatible
bipolar transistor with a laterally graded emitter structure
    • 用于产生具有横向渐变发射极结构的自对准二元双极晶体管的方法和结构
    • US5444003A
    • 1995-08-22
    • US81761
    • 1993-06-23
    • Chung S. WangYing-Tsong LohHo-Yuan Yu
    • Chung S. WangYing-Tsong LohHo-Yuan Yu
    • H01L21/8249H01L27/06H01L21/265H01L21/70H01L27/00H01L21/255
    • H01L27/0623H01L21/8249
    • A bipolar transistor is fabricated in a CMOS-compatible process so as to be self-aligning, with resultant small geometry and improved high frequency performance, and to have improved hot carrier characteristics. The bipolar device has a laterally graded emitter structure that is fabricated in a "top-down" implant process. During fabrication sidewall spacers are formed overlying the peripheral region of the laterally graded emitter. These spacers protect the underlying region against counter-doping during a subsequent intrinsic base implant, and cause the emitter and base contacts to be self-aligning. Because bipolar dimensions are thus reduced, a very narrow base width is achieved, resulting in improved device cutoff frequency. Further, a narrower emitter-base contact separation is achieved, reducing junction area and attendant junction capacitance. A base link region is formed to further improve emitter-base breakdown voltage, and to reduce extrinsic base resistance. A BiCMOS integrated circuit may be fabricated with bipolar transistors of either polarity and with MOS transistors of either polarity. BiCMOS fabrication can occur wherein substantially the same process steps are employed, or wherein specific bipolar and MOS implant steps are decoupled to optimize laterally graded emitter dopant profiles, base-link resistance, and MOS off-state leakage currents.
    • 双极晶体管以CMOS兼容工艺制造,以便进行自对准,从而获得小的几何形状和改善的高频性能,并具有改进的热载流子特性。 双极器件具有横向渐变的发射极结构,其以“自顶向下”植入工艺制造。 在制造期间,侧壁间隔物形成在横向渐变发射体的周边区域上。 这些间隔件在随后的本征基极植入期间保护底层区域免受反掺杂,并且使发射极和基极触点自对准。 因为双极尺寸因此减小,所以实现非常窄的基极宽度,导致器件截止频率的提高。 此外,实现较窄的发射极 - 基极接触分离,减少结面积和伴随的结电容。 形成基极连接区域以进一步提高发射极 - 基极击穿电压,并减少外部基极电阻。 BiCMOS集成电路可以用任一极性的双极晶体管和任一极性的MOS晶体管制造。 可以发生BiCMOS制造,其中采用基本上相同的工艺步骤,或者其中特定的双极和MOS注入步骤被去耦以优化横向渐变的发射极掺杂物分布,基极连接电阻和MOS截止状态漏电流。