会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明授权
    • Semiconductor laser
    • 半导体激光器
    • US07995635B2
    • 2011-08-09
    • US12726659
    • 2010-03-18
    • Chie Fukuda
    • Chie Fukuda
    • H01S3/10H01S5/00H01S3/08
    • H01S5/06258H01S5/0265H01S5/0425H01S5/1212
    • A wavelength tunable laser according to the present invention includes a first facet and a second facet opposite the first facet, a reflective region provided adjacent to the second facet, and a gain region provided between the first facet and the reflective region. The reflective region has a plurality of reflection peak wavelengths that periodically vary at a predetermined wavelength interval. The first facet and the reflective region constitute a laser cavity. Furthermore, the gain region includes an active layer where light is generated, a diffraction grating layer having a diffraction grating whose grating pitch varies in a light propagation direction, a refractive-index control layer provided between the active layer and the diffraction grating layer, a first electrode for injecting current into the active layer, and a plurality of second electrodes arranged in the light propagation direction to inject current into the refractive-index control layer.
    • 根据本发明的波长可调激光器包括与第一刻面相对的第一刻面和第二刻面,邻近第二刻面设置的反射区域以及设置在第一刻面与反射区域之间的增益区域。 反射区域具有以预定波长间隔周期性变化的多个反射峰值波长。 第一面和反射区域构成激光腔。 此外,增益区域包括其中产生光的有源层,具有光栅间距在光传播方向上变化的衍射光栅的衍射光栅层,设置在有源层和衍射光栅层之间的折射率控制层, 用于将电流注入有源层的第一电极和沿光传播方向排列的多个第二电极,以将电流注入折射率控制层。
    • 5. 发明申请
    • Production method of optical waveguide device and optical waveguide device
    • 光波导器件和光波导器件的制造方法
    • US20060088267A1
    • 2006-04-27
    • US11242063
    • 2005-10-04
    • Chie FukudaKatsuyoshi AkibaKouji Shiotsuka
    • Chie FukudaKatsuyoshi AkibaKouji Shiotsuka
    • G02B6/10
    • G02B6/132
    • An optical waveguide device and a method of making the same that render excellent transmission loss characteristics and allow a large degree of freedom in circuit design are provided. The method has the steps of forming a fluorine-added silica glass first cladding layer on a substrate, forming a silica glass protective layer on the first cladding layer, annealing, forming a groove that penetrates through the protective layer and reaches the first cladding layer, forming a silica glass core in the groove, and forming a fluorine-added silica glass second cladding layer on the protective layer and the core. The device has a substrate, a first cladding layer formed on the substrate, a protective layer formed on the first cladding layer, a core formed in a groove that penetrates through the protective layer and reaches the first cladding layer, and a second cladding layer formed on the protective layer and the core.
    • 提供一种光波导器件及其制造方法,其具有优异的传输损耗特性并且允许电路设计中的大自由度。 该方法具有以下步骤:在基板上形成氟化石英玻璃第一包层,在第一包层上形成石英玻璃保护层,退火,形成穿过保护层并到达第一包层的沟槽, 在所述槽中形成石英玻璃芯,并在所述保护层和所述芯上形成氟化石英玻璃第二包覆层。 该器件具有基板,形成在基板上的第一包覆层,形成在第一包层上的保护层,形成在贯穿保护层并到达第一包层的槽的芯部,以及形成第二包层 在保护层和芯上。
    • 6. 发明申请
    • Method of manufacturing optical waveguide device
    • 制造光波导器件的方法
    • US20050213916A1
    • 2005-09-29
    • US11074898
    • 2005-03-09
    • Chie FukudaTetsuya HattoriMorihiro Seki
    • Chie FukudaTetsuya HattoriMorihiro Seki
    • G02B6/13G02B6/10G02B6/136
    • G02B6/136
    • A method of manufacturing an optical waveguide device with low scattering loss is provided. This method comprises, in the following order, the steps of forming a groove by etching in a cladding member having a glass region including a first dopant that lowers the softening temperature of the glass region, heat treating the cladding member at a temperature that is higher than the lowered softening temperature, forming a core within the groove, and forming an overcladding layer composed of glass including a second dopant over the core and the cladding member. Alternatively, this method comprises the steps of forming a groove by etching in a cladding member having a glass region including one of elemental germanium, elemental phosphorus, and elemental boron, heat treating the cladding member after the formation of the groove, forming a core within the groove, and forming an overcladding layer over the core and the cladding member.
    • 提供一种制造具有低散射损耗的光波导器件的方法。 该方法按照以下顺序包括通过蚀刻在具有降低玻璃区域的软化温度的第一掺杂剂的玻璃区域的包层部件中形成沟槽的步骤,在较高温度下对包层部件进行热处理 比降低的软化温度,在槽内形成芯,并且在芯和包层构件上形成由包括第二掺杂剂的玻璃构成的外包层。 或者,该方法包括以下步骤:在具有包括元素锗,元素磷和元素硼中的一种的玻璃区域的包层构件中通过蚀刻形成沟槽,在形成沟槽之后对包层构件进行热处理,形成芯 并且在芯和包层构件上形成外包层。
    • 7. 发明授权
    • Semiconductor laser
    • 半导体激光器
    • US08737446B2
    • 2014-05-27
    • US13046866
    • 2011-03-14
    • Chie Fukuda
    • Chie Fukuda
    • H01S5/00
    • H01S5/026H01S5/06256H01S5/1032H01S5/1071H01S5/1212H01S5/142H01S5/50
    • A semiconductor laser includes a gain region; a distributed Bragg reflector (DBR) region including a diffraction grating; an end facet facing the DBR region with the gain region arranged therebetween; a first ring resonator including a first ring-like waveguide and a first optical coupler; a second ring resonator including a second ring-like waveguide and a second optical coupler; and an optical waveguide that is optically coupled to the end facet and extending in a predetermined optical-axis direction. The first and second ring resonators are optically coupled to the optical waveguide through the first and second optical couplers, respectively. Also, the DBR region, the gain region, and the end facet constitute a laser cavity. Further, the first ring resonator has a free spectral range different from a free spectral range of the second ring resonator.
    • 半导体激光器包括增益区域; 包括衍射光栅的分布式布拉格反射器(DBR)区域; 面对DBR区域的端面,其中设置有增益区域; 包括第一环形波导和第一光耦合器的第一环谐振器; 包括第二环形波导和第二光耦合器的第二环形谐振器; 以及光学波导,其光学耦合到所述端面并且在预定的光轴方向上延伸。 第一和第二环形谐振器分别通过第一和第二光耦合器光耦合到光波导。 此外,DBR区域,增益区域和端面构成激光腔。 此外,第一环形谐振器具有与第二环形谐振器的自由光谱范围不同的自由光谱范围。
    • 8. 发明授权
    • Method for making polarization rotator and the polarization rotator made thereby
    • 用于制造偏振旋转器的方法和由此制成的偏振旋转器
    • US08705901B2
    • 2014-04-22
    • US13400826
    • 2012-02-21
    • Chie Fukuda
    • Chie Fukuda
    • G02B6/44G02B6/00H01L31/00
    • G02B6/126G02B6/29389
    • A method for making a polarization rotator includes the steps of forming a structure including a semiconductor substrate and a mesa part, forming a first semiconductor layer on a main surface of the semiconductor substrate and around the mesa part, forming a second semiconductor layer on the first semiconductor layer, forming a semiconductor laminate by forming a third semiconductor layer on the second semiconductor layer, forming a mask layer on the third semiconductor layer, forming a mesa including a first semiconductor core by etching the semiconductor laminate, and forming a first semiconductor cladding by forming a fourth semiconductor layer around the mesa. The first semiconductor core and the first semiconductor cladding form a polarization rotating unit. An inclined surface of a mesa-part-adjacent portion extends in a second direction forming an acute angle with the main surface. An inclined portion of the second semiconductor layer extends in the second direction.
    • 一种用于制造偏振旋转器的方法包括以下步骤:形成包括半导体衬底和台面部分的结构,在半导体衬底的主表面上并围绕台面部分形成第一半导体层,在第一半导体层上形成第二半导体层 半导体层,通过在第二半导体层上形成第三半导体层形成半导体层叠体,在第三半导体层上形成掩模层,通过蚀刻半导体层叠体形成包括第一半导体芯的台面,并且通过 在台面周围形成第四半导体层。 第一半导体芯和第一半导体包层形成偏振旋转单元。 台面部分相邻部分的倾斜表面在与主表面形成锐角的第二方向上延伸。 第二半导体层的倾斜部分沿第二方向延伸。
    • 9. 发明申请
    • WAVELENGTH TUNABLE LASER
    • 波长能激光
    • US20100189143A1
    • 2010-07-29
    • US12691336
    • 2010-01-21
    • Chie Fukuda
    • Chie Fukuda
    • H01S3/10H01S5/026
    • H01S5/026H01S5/1032H01S5/4012H01S5/4025H01S5/4087
    • A wavelength tunable laser includes a first facet including a high reflection coating film; a gain region disposed adjacent to the first facet, the gain region including two or more light emitting devices that are arranged parallel to one another; an optical wavelength multiplexer optically connected to the light emitting devices; and an optical reflector disposed adjacent to a second facet opposite the first facet, the optical reflector having a reflection spectrum with periodic reflection peaks. The optical wavelength multiplexer is disposed between the gain region and the optical reflector, and the optical reflector and the first facet including the high reflection coating film form a laser cavity.
    • 波长可调激光器包括包括高反射涂膜的第一刻面; 与所述第一面相邻设置的增益区域,所述增益区域包括彼此平行布置的两个或更多个发光器件; 光学波长多路复用器光学连接到发光器件; 以及光学反射器,其设置成与第一刻面相对的第二刻面相邻,所述光学反射器具有具有周期性反射峰值的反射光谱。 光学波长多路复用器设置在增益区域和光反射器之间,并且包括高反射涂膜的光反射器和第一面形成激光腔。
    • 10. 发明授权
    • Optically amplifying waveguide, optical amplifier module, and optical communication system
    • 光放大波导,光放大器模块和光通讯系统
    • US07181119B2
    • 2007-02-20
    • US10933477
    • 2004-09-03
    • Motoki KakuiChie Fukuda
    • Motoki KakuiChie Fukuda
    • G02B6/10H01S3/00
    • H04B10/294G02B6/2821H01S3/005H01S3/0064H01S3/0078H01S3/067H01S3/06716H01S3/06758H01S3/06775H01S3/1608
    • An optically amplifying waveguide that can have a gain having a small wave-length dependency in a wavelength range shorter than the C-band, and the like. The optical amplifier module 1 optically amplifies a signal lightwave that has a wavelength lying in a wavelength range of 1,490 to 1,530 nm and that has entered an input connector 11 to output the optically amplified signal lightwave from an output connector 12. An optical isolator 21, a WDM coupler 31, an Er-doped optical fiber (EDF) 50, a WDM coupler 32, and an optical isolator 22 are provided in this order on a signal lightwave-transmitting path from the input connector 11 to the output connector 12. A pump source 41 connected to the WDM coupler 31 and a pump source 42 connected to the WDM coupler 32 are also provided. In the EDF 50, at least one of the stimulated-emission cross section and the absorption cross section assumes a maximum value at the shorter-wavelength side of a peak at a wavelength range of 1.53 μm.
    • 可以具有在比C波段短的波长范围内具有小波长依赖性的增益的光放大波导等。 光放大器模块1对具有波长范围为1,490至1,530nm的波长的信号光波进行光学放大,并且已经进入输入连接器11以从输出连接器12输出光放大信号光波。光隔离器21, 在从输入连接器11到输出连接器12的信号光波传播路径上依次设置WDM耦合器31,掺铒光纤(EDF)50,WDM耦合器32和光隔离器22。 还提供连接到WDM耦合器31的泵浦源41和连接到WDM耦合器32的泵浦源42。 在EDF50中,受激发射截面和吸收截面中的至少一个在1.53μm波长范围内的峰的短波长侧呈现最大值。